cho tứ diện ABCD AB=AC=acăn2 BD=CD=acăn3 BC=2a góc tạo bởi mp (ABC) và (DBC) = 45 độ. khoảng cách từ B đến (ACD) là
Cho tứ diện ABCD có các tam giác ABC và DBC vuông cân và nằm trong hai mặt phẳng vuông góc với nhau, A B = A C = D B = D C = 2 a . Tính khoảng cách từ B đến mp (ACD)
A. a 6
B. 2 a 6 3
C. a 6 3
D. a 6 2
Đáp án là B.
B C = A B 2 = 2 a 2 .Gọi H là trung điểm BC ta có:
A H ⊥ B C B C = A B C ∩ D B C A B C ⊥ D B C ⇒ A H ⊥ D B C
kẻ H E ⊥ D C , H K ⊥ A E (1)
D C ⊥ H E D C ⊥ A H ( d o A H ⊥ D B C ⊂ D C ) ⇒ D C ⊥ A H E ⇒ D C ⊥ H K 2
từ 1 & 2 H K ⊥ A D C ⇒ d H ; A D C = H K
d B ; A D C = 2 d H ; A D C = 2 A H . H E A H 2 + H E 2 = 2 6 3
A H = B C 2 , H E = A B 2 ; A H = B C 2 = a 2 , H E = B C 2 = a
Cho tứ diện ABCD có A B = A D = a 2 , B C = B D = a và C A = C D = x . Khoảng cách từ B đến mặt phẳng (ACD) bằng a 3 2 . Biết thể tích của khối tứ diện bằng a 3 3 12 . Góc giữa hai mặt phẳng (ACD) và (BCD) là
A. 60 0 .
B. 45 0 .
C. 90 0 .
D. 120 0 .
Đáp án C
Gọi h là khoảng cách từ B → A C D
⇒ h = a 3 2 ⇒ S Δ A C D = 3 V A B C D h = 3 a 3 3 12 a 3 2 = a 2 2
Gọi M là trung điểm AD ⇒ C M ⊥ A D .
⇒ C M = 2 S A C D A D = 2. a 2 2 a 2 = a 2 2 = 1 2 A D
⇒ Δ A C D vuông tại C ⇒ C A = C D = a
Δ C A D = Δ C B A C . C . C ⇒ A C D ^ = A C B ^ = 90 0
⇒ A C ⊥ C D A C ⊥ C B ⇒ A C ⊥ B C D ⇒ A C D ⊥ B C D
Hay góc giữa hai mặt phẳng bằng 90 0
Cho tứ diện ABCD có AB=AD= a 2 , BC=BD=a, CA=CD=x. Khoảng cách từ B đến mặt phẳng (ACD) bằng a 3 2 . Biết thể tích của khối tứ diện bằng a 3 3 12 . Góc giữa hai mặt phẳng (ACD) và (BCD) là
A. 60 o
B. 45 o
C. 90 o
D. 120 o
Cho tứ diện ABCD có AB = AD = a 2 , BC = BD = a và CA = CD = x. Khoảng cách từ B đến mặt phẳng (ACD) bằng a 3 2 . Biết thể tích của khối tứ diện bằng a 3 3 12 . Góc giữa hai mặt phẳng (ACD) và (BCD) là:
A.600
B.450
C.900
D.1200
Chọn C
Gọi H là trung điểm cạnh CD và K là trung điểm cạnh AD.
Tam giác ACD có CA=CD=x=a ; AD = a 2 => tam giác ACD vuông cân tại C
Mặt khác:
Tam giác ABD có:
Tam giác BHK có:
=> Tam giác BHK vuông tại H ⇒ B H K ^ = 90 o hay A C D , B C D ^ = 90 o
Tứ diện ABCD có AB, AC, AD đôi một vuông góc. Tam giác ABC cân tại A, có A B = 2 a , A C D = 60 o . M là trung điểm AB, N ∈ B C sao cho . Khi đó khoảng cách từ P đến mặt phẳng (BCD) bằng (với P là giao điểm MN và AC).
A. 2 a 21 7 .
B. a 21 7 .
C. a 7 7
D. 2 a 7 7
Đáp án A
Chọn hệ trục tọa độ Oxy
A D = 2 a tan 60 o = 2 a 3
Từ M kẻ MH song song với AC ta có MH =a
PT của mặt phẳng (BCD) là x 2 a + y 2 a + z 2 3 a = 1
Vậy khoảng cách từ
P
(
0
;
4
a
;
0
)
đến (BCD) là:
Tứ diện ABCD có AB, AC, AD đôi một vuông góc. Tam giác ABC cân tại A, có AB = 2a, A C D = 60 o . M là trung điểm AB, N ∈ B C sao cho BN = 2NC. Khi đó khoảng cách từ P đến mặt phẳng (BCD) bằng (với P là giao điểm MN và AC)
A. 2 a 21 7
B. a 21 7
C. a 7 7
D. 2 a 7 7
Chọn hệ trục tọa độ Oxyz. Có O = A, AB = Ox, AC = Oy, AD = Oz, AD = 2 α tan 60 o = 2 a 3 , N H = 1 2 - 1 3 B C = 1 6 B C = 1 2 N C
Từ M kẻ MH song song với AC ta có MH = a; CP = 2MH = 2a ⇒ AP = 4a
PT của mặt phẳng (BCD) là x 2 a + y 2 a + z 2 3 a = 1 . Vậy khoảng cách từ P ( 0;4a;0 ) đến (BCD) là:
1 1 4 a 2 + 1 4 a 2 + 1 12 a 2 = a 12 7 = 2 a 21 7
Đáp án cần chọn là A
Tứ diện ABCD có AB, AC, AD đôi một vuông góc. Tam giác ABC cân tại A, có A B = 2 a , A C D = 60 ° . M là trung điểm AB, N ∈ B C sao cho B N → = 2 N C → . Khi đó khoảng cách từ P đến mặt phẳng (BCD) bằng (với P là giao điểm MN và AC)
A. 2 a 21 7
B. a 21 7
C. a 7 7
D. 2 a 7 7
Cho tứ diện ABCD có B C = C D = B D = 2 a , A C = a 2 , A B = a . Góc giữa hai mặt phẳng (ACD) và (BCD) có số đo là
A. 90o.
B. 60o.
C. 45o.
D. 30o.
Cho tứ diện ABCD có B C = C D = B D = 2 a , A C = A D = a 2 , A B = a . Góc giữa hai mặt phẳng (ACD) và (BCD) có số đo là:
A. 90 °
B. 60 °
C. 45 °
D. 30 °