cho hình hộp ABCDA'B'C'D'. M ϵ AD, N ϵ D'C' sao cho \(\frac{AM}{MD}=\frac{D'N}{NC'}=\frac{1}{2}\)
a) Chứng minh rằng MN // mp(C'BD)
b) Tìm thiết diện của hình hộp cắt bởi mp(P) qua MN và // (C'BD)
cho hình hộp ABCDA'B'C'D'. M ϵ AD, N ϵ D'C' sao cho \(\frac{AM}{MD}=\frac{D'N}{NC'}=\frac{1}{2}\)
a) Chứng minh rằng MN // mp(C'BD)
b) Tìm thiết diện của hình hộp cắt bởi mp(P) qua MN và // (C'BD)
có phương pháp tìm thiết diện k ak... chỉ dùm e vs
....
có phương pháp tìm thiết diện k ak... chỉ dùm e vs
....
Bước 1: Từ hai điểm chung có sẵn, xác định giao tuyến đầu tiên của mặt phẳng (P) với một mặt của hình chóp.
Bước 2: Cho giao tuyến vừa tìm được cắt các cạnh của mặt đó của hình chóp ta sẽ được các điểm chung mới của (P) với các mặt khác. Từ đó xác định được giao tuyến với các mặt này.
Bước 3: Tiếp tục như trên tới khi các đoạn giao tuyến tạo thành một đa giác phẳng khép kín ta được thiết diện.
Bươc 4: Dựng thiết diện và kết luận.
Giúp e với ạ
1Cho hình lăng trụ ABC.A1B1C1 có AB=a, AC=2a, góc BAC=120 .AA1 =a\(\sqrt{3}\). Gọi M là trung điểm BB1 và H là chân đường cao kẻ từ B của tam giác ABC. Chứng minh HM vuông góc với mặt phẳng (MA1C1).
2. cho hàm số f(x)=x3 -3x (c). Viết phương trình tiếp tuyến của (c) tại điểm M đế trục tung bằng 2
cho tứ diện ABCD AB=AC=acăn2 BD=CD=acăn3 BC=2a góc tạo bởi mp (ABC) và (DBC) = 45 độ. khoảng cách từ B đến (ACD) là
Cho hình chóp S.ABC có đáy ABC là tam giác cân tại B . BA=BC=2a , góc SAC = 30°.Tính cạnh SA
Cho Hình chóp SABCD có ABCD là một tú giác lồi. Gọi M,N lần lượt là trung điểm của SA và Sc.
Xác định thiết diện của hình chóp khi cắt bởi các mặt phẳng lần lượt qua M, N và// với mp (SBD)
b/ Gọi I và J lần lượt là giao điểm của AC với ha mặt phẳng nói trên. Chứng minh AC= 2IJ
a. Qua M kẻ đường thẳng song song SB cắt AB tại E
Qua M kẻ đường thẳng song song SD cắt AD tại H
\(\Rightarrow\Delta MEH\) là thiết diện của mp qua M và song song (SBD)
Qua N kẻ đường thẳng song song SB cắt BC tại F
Qua N kẻ đường thẳng song song SD cắt CD tại G
\(\Rightarrow NFG\) là thiết diện của mp qua N và song song (SBD)
b. Gọi O là giao điểm AC và BD
Do M là trung điểm SA, \(ME||SB\Rightarrow ME\) là đường trung bình tam giác SAB
\(\Rightarrow\) E là trung điểm AB
Hoàn toàn tương tự, ta có F là trung điểm BC, G là trung điểm CD, H là trung điểm AD
\(\Rightarrow EH\) là đường trung bình tam giác ABD, FG là đtb tam giác BCD
\(\Rightarrow I\) là trung điểm AO, J là trung điểm CO
\(\Rightarrow\left\{{}\begin{matrix}OI=\dfrac{1}{2}OA\\OJ=\dfrac{1}{2}OC\end{matrix}\right.\) \(\Rightarrow OI+OJ=\dfrac{1}{2}\left(OA+OC\right)\Rightarrow IJ=\dfrac{1}{2}AC\)
giúp em với em cảm ơn nhiều lắmmm ạ
Kẻ \(HE\perp AD\) , do tam giác ABD đều \(\Rightarrow HE=\dfrac{a\sqrt{3}}{2}\) ; \(AE=\dfrac{1}{4}AD\)
\(\Rightarrow AE=BM\Rightarrow\) tứ giác AEBM là hình bình hành \(\Rightarrow\) H đồng thời là trung điểm ME
Kẻ \(HK\perp SE\Rightarrow HK\perp\left(SAD\right)\)
a. Ta có: \(SH=HE\Rightarrow\) tam giác SHE vuông cân tại H
\(\Rightarrow\) K đồng thời là trung điểm SE
\(\Rightarrow\) KH là đường trung bình tam giác SME \(\Rightarrow SM||HK\)
\(\Rightarrow SM\perp\left(SAD\right)\)
b. Từ C kẻ \(CX\perp\left(SAD\right)\Rightarrow\widehat{CSX}\) là góc giữa SC và (SAD) đồng thời \(CX=d\left(C;\left(SAD\right)\right)\)
\(\Rightarrow sin\alpha=sin\widehat{CSX}=\dfrac{CX}{SC}\)
Từ M kẻ \(MI\perp SE\Rightarrow MI||HK\Rightarrow MI\perp\left(SAD\right)\)
\(\Rightarrow MI=d\left(M;\left(SAD\right)\right)\)
Mà \(CM||AD\Rightarrow CM||\left(SAD\right)\Rightarrow d\left(C;\left(SAD\right)\right)=d\left(M;\left(SAD\right)\right)\)
\(\Rightarrow CX=MI\)
HK là đường trung bình tam giác MIE \(\Rightarrow MI=2HK\)
\(MI=2HK=\dfrac{2SH.HE}{\sqrt{SH^2+HE^2}}=\dfrac{SH.a\sqrt{3}}{\sqrt{SH^2+\dfrac{3a^2}{4}}}\)
\(SC=\sqrt{SH^2+CH^2}=\sqrt{SH^2+MH^2+CM^2}=\sqrt{SH^2+HE^2+CM^2}\)
\(=\sqrt{SH^2+7a^2}\)
\(\Rightarrow sin\alpha=\dfrac{SH.a\sqrt{3}}{\sqrt{SH^2+7a^2}.\sqrt{SH^2+\dfrac{3a^2}{4}}}=\dfrac{a\sqrt{3}}{\sqrt{SH^2+\dfrac{21a^4}{4SH^2}+\dfrac{31}{4}a^2}}\le\dfrac{a\sqrt{3}}{\sqrt{2\sqrt{\dfrac{21a^4}{4}}+\dfrac{31}{4}a^2}}\)
Dấu "=" xảy ra khi \(SH^2=\dfrac{21a^4}{4SH^2}\Rightarrow SH=a\sqrt[4]{\dfrac{21}{4}}\)
Em kiểm tra lại tính toán