Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thanh Ngọc
Xem chi tiết
Kim Ngưu
Xem chi tiết
Nguyễn Anh Quân
1 tháng 12 2017 lúc 20:52

B = (n^4-3n^3)+(2n^3-6n^2)+(7n-21) = (n-3).(n^3+2n^2+7)

Để B là số nguyên tố => n-3 = 1 hoặc n^3+2n^2+7 = 1

=> n=4 hoặc n^3+2n^2+6=0

=> n=4 ( vì n^3+2n^2+6 > 0 )

Khi đó : B = 4^4-4^3-6.4^2+7.4-21 = 103 là số nguyên tố (tm)

Vậy n = 4

k mk nha

Hà Thị Lan Phương
Xem chi tiết
Hà Thị Lan Phương
28 tháng 10 2020 lúc 21:32

mọi người giúp mik câu này nha tks mn nhìu


 

Khách vãng lai đã xóa
Nguyễn Phúc Hậu
Xem chi tiết
Lê Anh Tú
Xem chi tiết
hồng nhung hp
8 tháng 8 2017 lúc 12:13

2 2/6 [ là hỗn số]

shoppe pi pi pi pi
Xem chi tiết
khánh hiền
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 3 2023 lúc 13:26

Để đây là số nguyên tố thì 2<=2n^2-6n+2<=4

=>2n^2-6n=0 hoặc 2n^2-6n-2=0 hoặc 2n^2-6n-3=0

mà n tự nhiên

nên n=0 hoặc n=3

 

Đào Hâm
Xem chi tiết
Lovers
22 tháng 10 2016 lúc 21:55

\(B=\left(n^4-3n^3\right)+\left(2n^3-6n^2\right)+\left(7n-21\right)\)

\(=n^3\left(n-3\right)+2n^2\left(n-3\right)+7\left(n-3\right)\)

\(=\left(n^3+2n^2+7\right)\left(n-3\right)\)

Dễ thấy \(n^3+2n^2+7>n-3\), mà số nguyên tố chỉ có 2 ước tự nhiên là 1 và chính nó.

\(\Rightarrow n-3=1\)

\(\Rightarrow n=4\)

Thử lại : \(B=103\left(TM\right)\)

 

Mika Yuuichiru
Xem chi tiết
Lê Hoàng
15 tháng 3 2020 lúc 13:00

\(A=n^3-6n^2+9n-2=n\left(n^2-6n+9\right)-2=n\left(n-3\right)^2-2\)

Vì một trong các thừa số \(n\) và \(\left(n-3\right)^2\) là số chẵn cho nên \(n\left(n-3\right)^2⋮2\forall n\in N\)

\(\Rightarrow n\left(n-3\right)^2-2⋮2\forall n\in N\) (số chẵn trừ đi số chẵn bằng số chẵn)

\(\Rightarrow A⋮2\forall n\in N\)

Mà 2 là số nguyên tố duy nhất mà chia hết cho 2

\(\Rightarrow n^3-6n^2+9n-2=2\)

\(\Leftrightarrow n^3-6n^2+9n-4=0\)

Giải phương trình trên ta được \(n\in\left\{1;4\right\}\) (đều thoả mãn điều kiện \(n\in N\))

Vậy với \(n\in\left\{1;4\right\}\)thì \(A=n^3-6n^2+9n-2\) là số nguyên tố.

Khách vãng lai đã xóa
Trần văn hạ
Xem chi tiết
Trần Nhật Anh
1 tháng 11 2018 lúc 20:25

tai sao b^c +a +a^b +c +c^a+b=2(a+b+c)