Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn thị khánh huyền
Xem chi tiết
park_shin_hye
12 tháng 4 2017 lúc 20:33

Gọi d là ƯCLN của 2n+1 và 3n+2

Ta có: 2n+1 chia hết cho d và 3n+2 chia hét cho d

=> (2n+1) - (3n+2) chia hết cho d

=> 3(2n+1) - 2(3n+2) chia hết cho d

=> -1 chia hét cho d

=> d C Ư(-1)=[-1;1]

Vậy \(\frac{2n+1}{3n+2}\)là phân số tối giản

k mình nha KHÁNH HUYỀN

Nguyen Ha Linh
7 tháng 4 2017 lúc 11:12

Gọi d là ƯCLN(2n+1, 3n+2)

suy ra: 2n+1  chia hết cho d

hồ thị lê
Xem chi tiết
Khánh Ngọc
30 tháng 7 2020 lúc 14:21

a. Gọi d là ƯCLN của  \(\frac{3n-1}{5n-2}\) , ta có :

\(\left(5n-2\right)-\left(3n-1\right)⋮d\)

\(\Rightarrow3\left(5n-2\right)-5\left(3n-1\right)⋮d\)

\(\Rightarrow15n-6-15n-5⋮d\)

\(\Rightarrow1⋮d\)

Vậy A tối giản với mọi n

b làm tương tự

Khách vãng lai đã xóa
Xyz OLM
30 tháng 7 2020 lúc 14:22

a) Gọi ƯCLN(3n - 1;5n - 2) = d

=> \(\hept{\begin{cases}3n-1⋮d\\5n-2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5.\left(3n-1\right)⋮d\\3\left(5n-2\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}15n-5⋮d\\15n-6⋮d\end{cases}}\Rightarrow\left(15n-5\right)-\left(15n-6\right)⋮d\)

=> \(1⋮d\Rightarrow d=1\)

=> 3n - 1 ; 5n - 2 là 2 số nguyên tố cùng nhau

=> \(\frac{3n-1}{5n-2}\)là phân số tối giản

b) Gọi ƯCLN(2n + 3 ; 2n - 1) = d

=> \(\hept{\begin{cases}2n+3⋮d\\2n-1⋮d\end{cases}}\Rightarrow2n+3-\left(2n-1\right)⋮d\Rightarrow4⋮d\Rightarrow d\inƯ\left(4\right)\Rightarrow d\in\left\{1;2;4\right\}\)

Vì 2n + 3 ; 2n - 1 là số lẻ với mọi \(n\inℕ^∗\)

=> 2n + 3 ; 2n - 1 không chia hết cho 2 ; 4

=> d = 1

=> 2n + 3 ; 2n - 1 là 2 số nguyên tố cùng nhau

=> B là phân số tối giản

Khách vãng lai đã xóa
lê quyên thảo
30 tháng 7 2020 lúc 14:57

ai biét

Khách vãng lai đã xóa
Phan Thị Quỳnh Thư
Xem chi tiết
Minh  Ánh
5 tháng 8 2016 lúc 9:29

mình pt làm câu sau thôi:

đặt UCLN của (2n+1, 3n+1) d

=> 2n+1 chia hết cho d và 3n+1 chia hết cho d

=> 6n+3 chia hết cho d và 6n+2 chia hết cho d 

=> 1chia hết cho d và d=1 

Die Devil
5 tháng 8 2016 lúc 9:33

bài tương tự nha bn

Chứng tỏ rằng : phân số 15n+1/30n+1 là phân số tối giản với n thuộc N?

gọi d là ƯC(15n+1;30n+1)
=>2.(15n+1) chia hết cho d và 30n+1 chia hết cho d
=>2.(15n+1)=30n+2
=>(30n+2)-(30n+1) cũng sẽ chia hết cho d
1 chia hết cho d
=> d=1
từ đó bạn sẽ biết thế nao chứ.

trần quang linh
Xem chi tiết
Hoàng Nguyễn
Xem chi tiết
Nguyễn Thị Kim Khánh
Xem chi tiết
kieu bao chau
5 tháng 3 2016 lúc 21:38

De \(\frac{5n+3}{3n+2}\)la phan so toi gian (n thuoc N)

thi 5n+3 chia het 3n+2

suy ra 3n+2 chia het 3n+2 suy ra 15n+10 chia het 3n+2

va 5n+3 chia het 3n+2 suy ra 15n+9 chia het 3n+2

suy ra ( 15n+10 - 15n+9 ) chia het 3n+2

suy ra 1 chia het 3n+2

suy ra 3n+2 thuoc uoc cua 1 la 1 ,-1

vi n thuoc N nen 3n+2=1 

suy ra 3n=1-2

suy ra n=-1/3( loai)

vay x thuoc rong

Nguyễn Hoàng Dũng
Xem chi tiết
Hàn Tử Băng
14 tháng 2 2018 lúc 17:06

\(\frac{3n}{3n+1}\).

Gọi ƯCLN ( 3n ; 3n + 1 ) là d .

\(\Rightarrow\)3n ⋮ d

         3n + 1 ⋮ d

\(\Rightarrow\)3n + 1 - 3n ⋮ d
\(\Rightarrow\) 1 ⋮ d

\(\Rightarrow\) d = 1 .

\(\Rightarrow\) 3n và 3n + 1 là hai số nguyên tố cùng nhau .

Vậy \(\frac{3n}{3n+1}\) là phân số tối giản .

:)

Phùng Minh Quân
14 tháng 2 2018 lúc 17:02

Gọi \(ƯCLN\left(3n;3n+1\right)\) là \(d\)   

\(\Rightarrow\)\(3n⋮d\) và \(\left(3n+1\right)⋮d\)

\(\Rightarrow\)\(\left(3n-3n-1\right)⋮d\) 

\(\Rightarrow\)\(\left(-1\right)⋮d\)

\(\Rightarrow\)\(d\inƯ\left(-1\right)\)

Mà \(Ư\left(-1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(ƯCLN\left(3n;3n+1\right)=\left\{1;-1\right\}\)

 Vậy \(\frac{3n}{3n+1}\) là phân số tối giản 

Nguyễn Châu Định
14 tháng 2 2018 lúc 17:06

\(\frac{3n}{3n+1}\)

Gọi d là ( 3n,3n+1)

=> 3n chia hết cho d; 3n+1 chia hết cho d

= (3n) - (3n+1) chia hết cho d

= 3n - 3n-1 chia hết cho d

=> -1 chia hết cho d

Và d = -1

Vậy 3n/3n+1 là tối giản

Tuy Nguyen
Xem chi tiết
Phùng Tuệ Minh
15 tháng 5 2019 lúc 8:27

Đặt ƯC(3n-2;n-1)=d

\(\Rightarrow\left\{{}\begin{matrix}3n-2⋮d\\n-1⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3n-2⋮d\\3n-3⋮d\end{matrix}\right.\)

\(\Rightarrow\left(3n-2\right)-\left(3n-3\right)⋮d\)

\(\Leftrightarrow3n-2-3n+3⋮d\)

\(\Leftrightarrow1⋮d\Rightarrow d\in\left\{1;-1\right\}\)

\(\Rightarrow\frac{3n-2}{n-1}\) tối giản.

Vậy:......................(đpcm)

Trần Nguyễn Bảo Quyên
15 tháng 5 2019 lúc 8:29

Gọi d là UCLN \(\left(3n-2;n-1\right)\)

\(\Rightarrow\left(3n-2\right)⋮d\)\(\left(n-1\right)⋮d\)

\(\Rightarrow\left(3n-2\right)⋮d\)\(3\left(n-1\right)⋮d\)

\(\Rightarrow3n-2⋮d\)\(3n-3⋮d\)

\(\Rightarrow3n-2-\left(3n-3\right)⋮d\)

\(\Rightarrow3n-2-3n+3⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Vậy phân số \(\frac{3n-2}{n-1}\) là phân số tối giản

Phuongp pham
Xem chi tiết