cho x+y=m và x\(^2\)+y\(^2\)=n. Tính giá trị biểu thức theo m và n
P= x\(^3\)+y\(^3\)
Cho x + y = m và xy = n. Tính giá trị biểu thức x2 + y2 theo m, n
( x+y)2= x2 +2xy+y2
=> x2 +y2 =( x+y)2 -2xy
Thay x+y =m và xy= n vào biểu thức , ta có:
x2 +y2 = m2 -2n
Vậy nếu x+y =m và xy= n thì x2 +y2 = m2 -2n.
a) tính giá trị của biểu thức D=4x-5y/3x+4y với x/y=3/4
b)cho hai biểu thức M=3x(x-y) và N=y^2-x^2. biết(x-y) chia hết cho 11.cmr:(M-N) chia hết cho 11
GIÚP MÌNH NHA!
a) ta có: \(\frac{x}{y}=\frac{3}{4}\Rightarrow4x=3y\)
\(D=\frac{4x-5y}{3x+4y}=\frac{3y-5y}{3y+4y-x}=\frac{-2y}{7y-x}=\frac{-2y}{7y-y3:4}\)
\(=\frac{-2y}{\frac{25}{4}y}=-2y:\left(\frac{25}{4}y\right)=-\frac{8}{25}\)
b) ta có: M=3x.(x-y) chia hết cho 11
N = y2 - x2 = y2 - xy - x2 + xy = y.(y-x) - x.(x-y) = (y-x).(y+x) = - (x-y).(y+x) chia hết cho 11
=> M-N chia hết cho 11 (đpcm)
Xét hai phân thức \(M = \dfrac{x}{y}\) và \(N = \dfrac{{{x^2} + x}}{{xy + y}}\)
a) Tính giá trị của các phân thức trên khi \(x = 3\), \(y = 2\) và khi \(x = - 1\), \(y = 5\).
Nêu nhận xét về giá trị của \(M\) và \(N\) khi cho \(x\) và \(y\) nhận những giá trị nào đó (\(y \ne 0\) và \(xy - y \ne 0\)).
b) Nhân tử thức của phân thức này với mẫu thức của phân thức kia, rồi so sánh hai đa thức nhận được.
a) Điều kiện xác định của phân thức \(M\): \(y \ne 0\)
Điều kiện xác định của phân thức \(N\): \(xy + y \ne 0\) hay \(xy \ne - y\)
Khi \(x = 3\), \(y = 2\) (thoả mãn điều kiện xác định), ta có:
\(M = \dfrac{3}{2}\)
\(N = \dfrac{{{3^2} + 3}}{{3.2 + 2}} = \dfrac{{9 + 3}}{{6 + 2}} = \dfrac{{12}}{8} = \dfrac{3}{2}\)
Vậy \(M = N = \dfrac{3}{2}\) khi \(x = 3\), \(y = 2\)
Khi \(x = - 1\), \(y = 5\) (thỏa mãn điều kiện xác định của \(M\)) ta có:
\(M = \dfrac{{ - 1}}{5}\)
Vậy \(M = \dfrac{{ - 1}}{5}\) khi \(x = - 1\), \(y = 5\)
Khi \(x = - 1\), \(y = 5\) thì \(xy + y = \left( { - 1} \right).5 + 5 = 0\) nên không thỏa mãn điều kiện xác định của \(N\). Vậy giá trị của phân thức \(N\) tại \(x = - 1\), \(y = 5\) không xác định.
b) Ta có:
\(x.\left( {xy + y} \right) = {x^2}y + xy\)
\(\left( {{x^2} + x} \right).y = {x^2}y + xy\)
Vậy \(x\left( {xy + y} \right) = \left( {{x^2} + x} \right)y\)
1 . Cho x+y=a và x.y=b . Tính giá trị biểu thức sau theo a và b :
a) x2 + y2
b) x3 + y3
c) x4 + y4
d) x5 + y5
2 . Cho x+y=1 .Tính giá trị biểu thức x3 + y3 + 3xy và x-y=1 .Tính giá trị biểu thức x3 - y3 - 3xy
3 . Cho a+b=1 . Tính giá trị biểu thức : M = a3 + b3 + 3ab .( 12 + b2 ) + 6.a2 .b2 . ( a+b)
a) Cho x+ y = 7. Tính giá trị của biểu thức sau : M = ( x + y )^3 + 2x^2 + 4xy + 2 y^2
b) Cho x - y = -5. Tính giá trị của : N = ( x - y )^3 - x^2 + 2xy - y^2
a) \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)
\(=7^3+2\left(x^2+2xy+y^2\right)\)
\(=343+2\left(x+y\right)^2\)
\(=343+2.7^2\)
\(=343+98=441\)
b) \(N=\left(x-y\right)^3-x^2+2xy-y^2\)
\(=\left(-5\right)^3-\left(x-y\right)^2\)
\(=-125-\left(-5\right)^2\)
\(=-125-25=-150\)
\(a,M=\left(x+y\right)^3+2x^2+4xy+2y^2\)
\(=\left(x+y\right)^3+2\left(x^2+2xy+y^2\right)\)
\(=\left(x+y\right)^3+2\left(x+y\right)^2\)
\(=\left(x+y\right)^2\left(x+y+2\right)=7^2.9=49.9=441\)
\(b,N=\left(x-y\right)^3-x^2+2xy-y^2\)
\(=\left(x-y\right)^3-\left(x^2-2xy+y^2\right)\)
\(=\left(x-y\right)^3-\left(x-y\right)^2\)
\(=\left(x-y\right)^2.\left(x-y-1\right)\)
\(=\left(-5\right)^2\left(-5-1\right)=15.-6=-150\)
cho x+y=m và x^2 + y^2=n. Tính giá tị biểu thức sau
P= x^3+y^3
\(\hept{\begin{cases}x+y=m\\x^2+y^2=n\end{cases}\Rightarrow x^2+2xy+y^2=m^2\Rightarrow xy=\frac{m^2-n}{2}}\)
P =\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=m.\left(n-\frac{m^2-2}{2}\right)\)
\(=m.\frac{3n-m^2}{2}=\frac{3mn-m^3}{2}\)
Cho hai số, y thỏa mãn: x+y=3 và x^2+y^2=5. Tính giá trị biểu thức: M=x^3+y^3
`x+y=3`
`<=>(x+y)^3=9`
`<=>x^2+2xy+y^2=9`
`<=>2xy+5=9`
`<=>2xy=4`
`<=>xy=2`
`<=>x^2-xy+y^2=3`
`=>M=(x+y)(x^2-xy+y^2)`
`=3.3`
`=9`
x+y=3
⇔(x+y)2=9
⇔x2+2xy+y2=9
⇔2xy+5=9(Vì x2+y2=5)
⇔2xy=4
⇔xy=2
Có : x2+y2=5
\(\Rightarrow\)x2+y2-xy =3
Có M=x3+y3
\(\Rightarrow\)M=(x+y)(x2−xy+y2)
\(\Rightarrow\)M=3.3
\(\Rightarrow\)M=9
x+y=m,ny=n .tính giá trị biểu thức sau theo m và n
a,x^4+y^4
\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2\)
\(=\left(m^2-2n\right)^2-2n^2=m^4-4m^2n+4n^2-2n^2=m^4-4m^2n+2n^2\)
cho x+y = m và x.y=n, tính giá trị biểu thứ theo m, n :
1) x\(^2\)+ y \(^2\)
2) x\(^3\) + y \(^3\)
a) x2 + y2
= (x2 + 2xy + y2) - 2xy
= (x + y)2 - 2xy
= m2 - 2n
b) x3 + y3
= (x + y)(x2 - xy + y2)
= m (x2 + 2xy + y2 - 3xy)
= m [(x + y)2 - 3xy]
= m . [ m2 - 3n ]
a)Cho x+y=7,tính giá trị của biểu thức M=(x+y)3+2x2+4xy+2y2
b)Cho x-y=-5,tính giá trị biểu thức N=(x-y)3-x2+2xy-y2
Viết lại :
a) \(M=\left(x+y\right)^3+2\left(x+y\right)^2\)
b) \(N=\left(x-y\right)^3-\left(x-y\right)^2\)
a) M=(x+y)3+2x2+4xy+2y2
M=73+(2x+2y)2=4(x+y)2=73+4.72=343+196=539
b)N=(x-y)3-x2+2xy-y2
N=-53-(x2-2xy+y2)=-125-(x-y)2=-125-(-5)2=-150