Cho a+b = 5
ab=6
Không tính a;b hãy tính a5+b5
cho biết a+b=5, ab=6. Không tính giá trị của a và b. Hãy tính a^2+b^2; a^3+b^3;a-b
a = 2
b = 3
rồi tính ra nhé
ai k mình mình k lại cho
Tìm giá trị lớn nhất của biểu thức 4x-x^2+3
Giúp mình nah :* cảm ơn nhiều lắm ạ
Cho : a+b=5 và ab=6 Không tính a,b. Hãy tính : a2+b2
\(a^2+b^2=\left(a+b\right)^2-2ab=5^2-2.6=13\)
a^2+b^2 = a^2+2ab+b^2-2ab
= (a+b)^2 - 2ab
= 5^2-2.6= 13
cho a + b =5 và ab =6
Không tìm a;b. Hãy tính:
A= a2 +b2
B = a3 + b3
C = a6 + b6
D = a7 +b7
a) ta có (a+b)2=a2+2ab+b2=a2+b2+2.6=a2+b2+12(1)
mà a+b=5 nên (a+b)2=25
từ(1) suy ra a2+b2=25-12=13
b) ta có (x+y)3=x3+y3+3xy(x+y)
suy ra x3+y3=(x+y)3-3xy(x+y)=125-90=35
Không tính a, b. Cho a - b = 5, ab =14. Tính a2 - b2.
a2 - b2 = ( a-b)2 + 2ab = 52 + 2. 14= 53 nhớ tk đấy
Cho biểu thức M= \(\dfrac{a}{\sqrt{ab}+b}+\dfrac{b}{\sqrt{ab}-a}-\dfrac{a+b}{\sqrt{ab}}\)nhau.với hai số a, b dương khác
a/ Rút gọn M
b/Tính giá trị của M khi a=\(\sqrt{6+2\sqrt{5}}\),b=\(\sqrt{6-2\sqrt{5}}\)
a: ta có: \(M=\dfrac{a}{\sqrt{ab}+b}+\dfrac{b}{\sqrt{ab}-a}-\dfrac{a+b}{\sqrt{ab}}\)
\(=\dfrac{a\left(\sqrt{ab}-a\right)+b\left(\sqrt{ab}+b\right)}{\left(\sqrt{ab}+b\right)\left(\sqrt{ab}-a\right)}-\dfrac{a+b}{\sqrt{ab}}\)
\(=\dfrac{-\sqrt{ab}\left(a+b\right)+\left(a-b\right)\left(a+b\right)}{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)\cdot\sqrt{a}\cdot\left(\sqrt{a}-\sqrt{b}\right)}-\dfrac{a+b}{\sqrt{ab}}\)
\(=\dfrac{-\sqrt{ab}\left(a+b\right)+\left(a-b\right)\left(a+b\right)}{\sqrt{ab}\left(a-b\right)}-\dfrac{a^2-b^2}{\sqrt{ab}\left(a-b\right)}\)
\(=\dfrac{-\sqrt{ab}}{\sqrt{ab}\left(a-b\right)}\)
\(=-\dfrac{1}{a-b}\)
b: Thay \(a=\sqrt{5}+1\) và \(b=\sqrt{5}-1\) vào M, ta được:
\(M=\dfrac{-1}{\sqrt{5}+1-\sqrt{5}+1}=\dfrac{-1}{2}\)
Cho a + b = 1, ab = -6. Tính a5 + b5 ?
ta có (a+b)5=\(a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5\)(sử dụng tam giac paxcal)
\(\Rightarrow a^5+b^5=\left(a+b\right)^5-\left(5a^4b+10a^3b^2+10a^2b^3+5ab^4\right)\)
\(=\left(a+b\right)^5-5ab\left(a^3+2a^2b+2ab^2+b^3\right)\)
\(=\left(a+b\right)^5-5ab\left(a^3+3a^2b+3ab^2+b^3-a^2b-ab^2\right)\)
\(=\left(a+b\right)^5-5ab\left(\left(a+b\right)^3-ab\left(a+b\right)\right)\)
thay vào ta được kết quả là 211
Tính \(A^5+B^5\) biết A + B = 3 và AB = 2
Tính \(A^6+B^6\) biết A + B = 2 và AB = 1
\(A^2+B^2=\left(A+B\right)^2-2AB=5\)
\(A^3+B^3=\left(A+B\right)^3-3AB\left(A+B\right)=9\)
\(A^5+B^5=\left(A^2+B^2\right)\left(A^3+B^3\right)-\left(AB\right)^2\left(A+B\right)=5.9-2^2.3=...\)
B.
\(A^2+B^2=\left(A+B\right)^2-2AB=2\)
\(A^6+B^6=\left(A^2\right)^3+\left(B^2\right)^3=\left(A^2+B^2\right)^3-3\left(AB\right)^2\left(A^2+B^2\right)=2^3-3.1^2.2=...\)
Ta có: \(A^2+B^2=\left(A+B\right)^2-2AB=3^2-2.2=5\)
\(A^5+B^5=\left(A^3+B^3\right)\left(A^2+B^2\right)-A^2B^2\left(A+B\right)=\left(A+B\right)\left(A^2-AB+B^2\right)\left(A^2+B^2\right)-A^2B^2\left(A+B\right)=3\left(5-2\right).5-2^2.3=33\)
cho a+b=5,ab=6
Tính a-b
cho tia AM , trên AM lấy B sao cho AB = 6 cm trên tia đối của AM lấy D sao cho AD = 4cm lấy K thuộc AB sao cho BK = 2cm
a) tính BD
b) tính AK
c) cho biết A có là trung điểm của DK không ?
a) Vì A nằm giữa DB nên:
DB = DA - AB
Hay DB = 4 + 6
⇒ DB = 10 cm
b) Vì K nằm giữa AB nên:
AK = AB - KB
Hay AK = 6 - 2
⇒ AK = 4 cm
c) Vì AD = AK = 4cm
nên A là trung điểm của DK
tính giá trị của biểu thức a) cho a+b=5 ab=6 tính a^3+b^3
b)cho a+b=1 tính giá trị của 2.(a^3+b^3)-3.(a^2+b^2)