CMR : trong 1 tứ giác tổng 2 đường chéo lớn hơn nửa chu vi và nhỏ hơn chu vi của tứ giác đó
CMR trong 1 tứ giác, tổng 2 đường chéo luôn lớn hơn nửa chu vi và nhỏ hơn chu vi tứ giác đó.
c/m1:
gọi O là giao điểm của 2 đường chéo trong tứ giác , gọi tên của tứ giác đó là tứ giác ABCD:
Trong Δ OAB có :
OA+OB>AB
Trong Δ OBC có :
OB+OC>BC
Trong Δ OAD có :
OD+OA>AD
Trong Δ OCD có :
OC+OD>CD
Ta có 4 bất đẳng thức:
2OB+2OC+2OA+2OD<AB+BC+CD+DA
<=>2BD+2AC>1/2p
<=>BD+AC> 1/2p
Vậy tổng 2 đường chéo trong 1 tứ giác luôn lớn hơn nửa chu vi (đpcm)
p : là nửa chu vi
c/m2:
Vẫn sử dụng tứ giác ABCD
do AC<p và BD<p
<=>AC+BD<2p
vậy tổng 2 đường chéo nhỏ hơn chu vi của tứ giác(đpcm)
CMR: Trong một tứ giác tổng hai đường chéo thì lớn hơn nửa chu vi và nhỏ hơn chu vi của tứ giác đó.
chứng minh rằng trong 1 tứ giác tổng 2 đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác đó
Gọi O là giao của AC và BD
AB>AO+BO
AD>AO+DO
BC>BO+CO
DC>DO+CO
=>AB+AD+BC+CD>2(AC+BD)
=>(AC+BD)<P/2
AC<AB+BC
AC<AD+DC
BD<BC+CD
BD<AB+AD
=>2(AC+BD)<2*C ABCD
=>AC+BD<C ABCD
Chứng minh rằng: Trong 1 tứ giác, tổng 2 đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác đó.
Gọi O là giao điểm 2 dường chéo AC và BD của tứ giác ABCD.
Áp dụng định lý " trong một tam giác một cạnh thì bé hơn tổng 2 cạnh kia" ta có:
AB < OA + OB (1)
BC < OB + OC (2)
CD < OC + OD (3)
DA < OD + OA (4)
(1) + (2) + (3) + (4) :
AB + BC + CD + DA < 2(OA + OC + OB + OD) = 2(AC + BD)
hay (1/2)(AB + BC + CD + DA) < AC + BD (*)
Mặt khác :
AC < AB + BC (1')
BD < BC + CD (2')
AC < CD + DA (3')
BD < DA + AB (4')
(1') + (2') + (3') + (4') :
2(AC + BD) > 2(AB + BC + CD + DA)
hay AC + BD < AB + BC + CD + DA (**)
Từ (*) và (**) (1/2)(AB + BC + CD + DA) < AC + BD < AB + BC + CD + DA
Gọi O là giao điểm 2 dường chéo AC và BD của tứ giác ABCD.
Áp dụng định lý " trong một tam giác một cạnh thì bé hơn tổng 2 cạnh kia" ta có:
AB < OA + OB (1)
BC < OB + OC (2)
CD < OC + OD (3)
DA < OD + OA (4)
(1) + (2) + (3) + (4) :
AB + BC + CD + DA < 2(OA + OC + OB + OD) = 2(AC + BD)
hay (1/2)(AB + BC + CD + DA) < AC + BD (*)
Mặt khác :
AC < AB + BC (1')
BD < BC + CD (2')
AC < CD + DA (3')
BD < DA + AB (4')
(1') + (2') + (3') + (4') :
2(AC + BD) > 2(AB + BC + CD + DA)
hay AC + BD < AB + BC + CD + DA (**)
Từ (*) và (**) (1/2)(AB + BC + CD + DA) < AC + BD < AB + BC + CD + DA
Chúc bạn học tốt !!!
Chứng minh rằng: Trong 1 tứ giác, tổng 2 đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác đó.
Giả sử tứ giác ABCD có: AB=a,BC=b,CD=c,DA=d.
Gọi O là giao điểm của AC và BD ta có:
AC+BD=AO+OB+OC+OD>AB+CD=a+c
Tương tự: AC+BD>b+d.
Suy ra: 2(AC+BD)>a+b+c+d⇒AC+BD=a+b+c+d2
Vậy tổng hai đường chéo lớn hơn nửa chu vi của tứ giác.
Theo bất đẳng thức tam giác ta có:
AC<a+b;AC<c+d
BD<b+c;BD<a+d
⇒2(AC+BD)<2(a+b+c+d).
⇒AC+BD<a+b+c+d.
Vậy tổng hai dường chéo nhỏ hơn chu vi tứ giác.
Giải:
Giả sử tứ giác ABCD có: AB=a,BC=b,CD=c,DA=d.
Gọi O là giao điểm của AC và BD ta có:
AC + BD = AO + OB + OC + OD > AB + CD = a + c
Tương tự: AC + BD > b + d
=> 2 ( AC + BD ) > a + b + c + d => AC + BD = a + b + c + d2
Vậy tổng hai đường chéo lớn hơn nửa chu vi của tứ giác.
Theo bất đẳng thức tam giác ta có như sau:
AC < a + b ; AC < c + d
BD < b + c ; BD < a + d
=>2(AC+BD)<2(a+b+c+d).
=>AC+BD<a+b+c+d.
Vậy tổng hai dường chéo nhỏ hơn chu vi tứ giác.
Học tốt
*YOUTUBER*
Chứng minh rằng: Trong 1 tứ giác tổng 2 đường chéo lớn hơn nửa chu vi và nhỏ hơn chu vi của tứ giác
Chứng minh rằng trong 1 tứ giác, tổng 2 đường chéo lớn hơn tổng 2 cạnh đối
Chứng minh rằng trong 1 tứ giác, tổng 2 đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy
Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác đó.
Đặt độ dài a = AB, b = BC, c = CD, d = AD
Gọi O là giao điểm 2 đường chéo AC và BD.
* Trong ∆ OAB, ta có:
OA + OB > a (bất đẳng thức tam giác) (1)
* Trong ∆ OCD, ta có:
OC + OD > c (bất đẳng thức tam giác) (2)
Từ (1) và (2) suy ra:
OA + OB + OC + OD > a + c hay AC + BD > a + c (*)
* Trong ∆ ΔOAD, ta có: OA + OD > d (bất đẳng thức tam giác) (3)
* Trong ∆ OBC, ta có: OB + OC > b (bất đẳng thức tam giác) (4)
Từ (3) và (4) suy ra:
OA + OB + OC + OD > b + d hay AC + BD > b + d (**)
Từ (*) và (**) suy ra: 2(AC + BD) > a + b + c + d
* Trong ∆ ABC, ta có: AC < AB + BC = a + b (bất đẳng thức tam giác)
* Trong ∆ ADC, ta có: AC < AD + DC = c + d (bất đẳng thức tam giác)
Suy ra: 2AC < a + b + c + d
* Trong ∆ ABD, ta có: BD < AB + AD = a + d (bất đẳng thức tam giác)
* Trong ∆ BCD, ta có: BD < BC + CD = b + c (bất đẳng thức tam giác)
Suy ra: 2BD < a + b + c + d
Từ (5) và (6) suy ra: AC + BD < a + b + c + d
Chứng minh rằng trong một tứ giác , tổng hai đường chéo lớn hơn nửa chu vi và nhỏ hơn chu vi tứ giác đó
Chứng minh rằng trong một tứ giác, tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác đó.
bn vào phần câu hỏi tương tự nhé, trong đó có đấy
Đặt độ dài a = AB, b = BC, c = CD, d = AD
Gọi O là giao điểm 2 đường chéo AC và BD.
* Trong ΔOAB, ta có:
OA + OB > a (bất đẳng thức tam giác) (1)
* Trong ΔOCD, ta có:
OC + OD > c (bất đẳng thức tam giác) (2)
Từ (1) và (2) suy ra:
OA + OB + OC + OD > a + c hay AC + BD > a + c (*)
* Trong ΔOAD, ta có: OA + OD > d (bất đẳng thức tam giác) (3)
* Trong ΔOBC, ta có: OB + OC > b (bất đẳng thức tam giác) (4)
Từ (3) và (4) suy ra:
OA + OB + OC + OD > b + d hay AC + BD > b + d (**)
Từ (*) và (**) suy ra: 2(AC + BD) > a + b + c + d
* Trong ΔABC, ta có: AC < AB + BC = a + b (bất đẳng thức tam giác)
* Trong ΔADC, ta có: AC < AD + DC = c + d (bất đẳng thức tam giác)
Suy ra: 2AC < a + b + c + d
* Trong ΔABD, ta có: BD < AB + AD = a + d (bất đẳng thức tam giác)
* Trong ΔBCD, ta có: BD < BC + CD = b + c (bất đẳng thức tam giác)
Suy ra: 2BD < a + b + c + d
Từ (5) và (6) suy ra: AC + BD < a + b + c + d