Tìm x: 2xy+y-3x=7
a, 3x ( y+1) + y + 1 = 7
(y+1)(3x +1) =7
th1 : \(\left\{{}\begin{matrix}y+1=1\\3x+1=7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y+1=-1\\3x+1=-7\end{matrix}\right.\)=> x = -8/3 (loại)
th3: \(\left\{{}\begin{matrix}y+1=7\\3x+1=1\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}y=6\\x=0\end{matrix}\right.\)
th 4 : \(\left\{{}\begin{matrix}y+1=-7\\3x+1=-1\end{matrix}\right.\)=> x=-2/3 (loại)
Vậy (x,y)= (2 ;0); (0; 6)
b, xy - x + 3y - 3 = 5
(x( y-1) + 3( y-1) = 5
(y-1)(x+3) = 5
th1: \(\left\{{}\begin{matrix}y-1=1\\x+3=5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=2\\x=8\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}y-1=-1\\x+3=-5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=-8\end{matrix}\right.\)
th3: \(\left\{{}\begin{matrix}y-1=5\\x+3=1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=6\\x=-2\end{matrix}\right.\)
th4: \(\left\{{}\begin{matrix}y-1=-5\\x+3=-1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=-4\\x=-4\end{matrix}\right.\)
vậy (x, y) = ( 8; 2); ( -8; 0); (-2; 6); (-4; -4)
c, 2xy + x + y = 7 => y = \(\dfrac{7-x}{2x+1}\) ; y ϵ Z ⇔ 7-x ⋮ 2x+1
⇔ 14 - 2x ⋮ 2x + 1 ⇔ 15 - 2x - 1 ⋮ 2x + 1
th1 : 2x + 1 = -1=> x = -1; y = \(\dfrac{7-(-1)}{-1.2+1}\) = -8
th2: 2x+ 1 = 1=> x =0; y = 7
th3: 2x+1 = -3 => x = x=-2 => y = \(\dfrac{7-(-2)}{-2.2+1}\) = -3
th4: 2x+ 1 = 3 => x = 1 => y = \(\dfrac{7+1}{2.1+1}\) = 2
th5: 2x + 1 = -5 => x = -3=> y = \(\dfrac{7-(-3)}{-3.2+1}\) = -2
th6: 2x + 1 = 5 => x = 2; ; y = \(\dfrac{7-2}{2.2+1}\) =1
th7 : 2x + 1 = -15 => x = -8; y = \(\dfrac{7-(-8)}{-8.2+1}\) = -1
th8 : 2x+1 = 15 => x = 7; y = \(\dfrac{7-7}{2.7+1}\) = 0
kết luận
(x,y) = (-1; -8); (0 ;7); ( -2; -3) ; ( 1; 2); ( -3; -2); (2;1); (-8;-1);(7;0)
3xy−2x+5y=293xy−2x+5y=29
9xy−6x+15y=879xy−6x+15y=87
(9xy−6x)+(15y−10)=77(9xy−6x)+(15y−10)=77
3x(3y−2)+5(3y−2)=773x(3y−2)+5(3y−2)=77
(3y−2)(3x+5)=77(3y−2)(3x+5)=77
⇒(3y−2)⇒(3y−2) và (3x+5)(3x+5) là Ư(77)=±1,±7,±11,±77Ư(77)=±1,±7,±11,±77
Ta có bảng giá trị sau:
Do x,y∈Zx,y∈Z nên (x,y)∈{(−4;−3),(−2;−25),(2;3),(24;1)}
Tìm số tự nhiên x,y thỏa mãn 2xy - 3y + 3x =7
\(2xy-3y+3x=7\)
\(\Leftrightarrow4xy-6y +6x=14\)
\(\Leftrightarrow2y\left(2x-3\right)+6x-9=5\)
\(\Leftrightarrow2y\left(2x-3\right)+3\left(2x-3\right)=5\)
\(\Leftrightarrow\left(2x-3\right)\left(2y+3\right)=5\)
Vì \(x,y\in N\)\(\Rightarrow2y+3\ge3\)\(\Rightarrow2y+3\inƯ\left(5\right)=\left\{5\right\}\)
\(\Rightarrow2y+3=5\Leftrightarrow y=1\)
\(\Rightarrow\left(2x-3\right)\left(2+3\right)=5\)
\(\Leftrightarrow2x-3=1\)
\(\Leftrightarrow x=2\)
Tìm x a) (3x-1).(2x+7)-(x+1).(6x-5)=(x+2)-(x-5. B) 3xy.(x+y)-(x+y).(x*+y*+2xy)y*=27
a)
\(6x^2+21x-2x-7-6x^2+5x-6x+5=x+2-x+5.\)
\(18x-2=7\)
\(18x=9\)
\(x=\frac{1}{2}\)
b) Mình tạm thời chưa giải vì chwua hiểu x* ý bạn là gì. bao giờ bạn đọc dc hãy bảo mình x* là gì và tk để mình biết mà giải tiếp nha
1. tìm x, y
a, x - = 2xy = 7
b, xy = 3x -y =6
c, 1/x + 1/y = 1/5
a) phân tích thành nt xét Ư
b) phân tích
c) quy đồng cộng vào nhân chéo phân tích r` cx xét Ư
Tìm x,y nguyên
a, xy+3x-y = 6
b, x2-2y2 = 1
c, x-y+2xy = 7
tìm các cặp số nguyên x,y sao cho
(x-7)(2y+3)=32
2xy+3x-2y=20
( x - 7 ) ( 2y + 3 ) = 32
<=> ( 2x - 14 ) y + 3x - 21 = 32
<=> ( 2x - 14) y + 3x - 32 - 21 = 0
<=> ( 2x - 14 ) y + 3x - 53 = 0
<=> ( 2x - 7) = 0
<=> 2x=2.7
<=> x = 7
<=> 2y + 3 = 0
<=> 2y = -3
<=> y = -1,5
Có \(2xy+3x-2y=20\)
\(\Rightarrow\left(2xy-2y\right)+3x=20\)
\(\Rightarrow2y\left(x-1\right)+3x=20\)
\(\Rightarrow2y\left(x-1\right)+3x-3=20-3\)
\(\Rightarrow2y\left(x-1\right)+3\left(x-1\right)=17\)
\(\Rightarrow\left(2y+3\right)\left(x-1\right)=17\)
\(\Rightarrow\hept{\begin{cases}2y+3\inƯ\left(17\right)\\x-1\inƯ\left(17\right)\end{cases}}\)
Ta có bảng giá trị sau:
2y+3 | 1 | 17 | -17 | -1 |
x-1 | 17 | 1 | -1 | -17 |
x | 18 | 2 | 0 | -16 |
y | -1 | 7 | -10 | -2 |
Vậy các cặp (x;y) thỏa mãn là (18;-1),(2;7),(0;-10);(-16;-2)
Tìm nghiệm nguyên của các phương trình sau:
a) 2xy - 4x - y = 1
b) (2x - 1)(y - 2) = 3
c) 2xy - x - y +1 = 0
d) 2xy - 4x + y = 7
e) 3xy + x - y = 1
f) xy + 3x - 5y = -3
g) 4x + 11y = 4xy
a) 2xy+x-2y= -3
b) 2xy+3x-y= 7
2xy + x - 2y = - 3
<=> x(2y + 1) - 2y = - 3
<=> x(2y + 1) - 2y - 1 = - 4
<=> x(2y + 1) - (2y + 1) = - 4
<=> (x - 1)(2y + 1) = - 4
=> x - 1 và 2y + 1 thuộc ước của - 4
Ư(-4) = { - 4; - 1; 1 ; 4 }
Mà 2y + 1 lẻ => 2y + 1 = { - 1; 1 }
Nếu 2y + 1 = - 1 thì x - 1 = 4 => y = - 1 thì x = 5
Nếu 2y + 1 = 1 thì x - 1 = - 4 => y = 0 thì x = - 3
Vậy ( x;y ) = { ( 5;-1 ) ; ( - 3;0 ) }
b ) tương tự nha
1.x-2xy+4y=7
2.3x+2xy-6y=10
3.4xy-3x+y=8
Bạn cần ghi đầy đủ điều kiện của x,y đề mọi người hỗ trợ tốt hơn.
Cho x,y khác 0. Tìm GTNN của \(A=\frac{3x^2+2xy}{x^2+2xy+y^2}\)
\(A=\dfrac{-\left(x^2+2xy+y^2\right)+4x^2+4xy+y^2}{x^2+2xy+y^2}=-1+\left(\dfrac{2x+y}{x+y}\right)^2\ge-1\)
\(A_{min}=-1\) khi \(2x+y=0\)