tìm x biết
a) x(x+2) - 3x-6=0
b) ( x^3+3x^2 +3x +1) - 3x^2-3x =0
c) 4x^2 - 25 =0
Bài 1: Tìm x biết a) x^3 - 4x^2 - x + 4= 0 b) x^3 - 3x^2 + 3x + 1=0 c) x^3 + 3x^2 - 4x - 12=0 d) (x-2)^2 - 4x +8 =0
a: \(x^3-4x^2-x+4=0\)
=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)
=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(x^2-1\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)
b: Sửa đề: \(x^3+3x^2+3x+1=0\)
=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)
=>\(\left(x+1\right)^3=0\)
=>x+1=0
=>x=-1
c: \(x^3+3x^2-4x-12=0\)
=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)
=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)
=>\(\left(x+3\right)\left(x^2-4\right)=0\)
=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)
d: \(\left(x-2\right)^2-4x+8=0\)
=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)
=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x-2-4\right)=0\)
=>(x-2)(x-6)=0
=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
Tìm x, biết:
a, 4x2 + 4x + 1 = 25
b, x3 - 3x2 + 3x - 2 = 0
c, 7x3 - 3x2 - 3x - 1 = 0
a, 4x2 + 4x + 1 = 25
⇔ ( 2x + 1 ) \(^2\) - 25 = 0
⇔( 2x + 1 - 5 ) ( 2x + 1 + 5 ) =0
⇔ ( 2x - 4 ) ( 2x + 6 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2x-4=0\\2x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
a) 4x2 + 4x +1 = 25
⇌ ( 2x+ 1)2 - 25 = 0
( 2x + 1 - 5) (2x + 1 + 5) = 0
(2x - 4) (2x + 6) = 0
\(⇌\left[{}\begin{matrix}2x-4=0\\\\2x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\\\x=-3\end{matrix}\right.\)Hk tốt!
Bài 1: (2đ). Thực hiện phép tính: a) 3x(x² + 2x - 1) b) (2x² +5x+2) : (x+2) 6 3 c) x² + 4x + 2x+8 Bài 2: (2đ). a) Tim x, biết: x(x – 2)+x−2 =0 a) x²-25-(x + 5) = 0 a) 2x²(3x² - 7x +2) b) (2x²-7x+3): (2x - 1) r 4-4x c) + x-2 x-2 x +1 -2x + c) 2x-2x² b) Tính giá trị của biểu thức: xẻ + 2x + l − y, tại x = 94,5 và y=4,5 b) Tính giá trị của biểu thức: (X + 1) − y”, tại x =94,5 và y=4,5 c) Tính giá trị biểu thức: Q = xẻ − 10x + 25 tại x = 1005 Bài 3: (2đ) Rút gọn phân thức a) A = x² +6x+9 b) 4x+10 2x²+5x B = c) C= x²-xy Sy²-5xy Bài 5: (2,5 đ) Cho AABC, đường trung tuyển AM. Gọi D là trung điểm của AB, E là điểm dối xứng với M qua D. a) Tử giác AEBM là hình gì? Vì sao? b) Biết AC = 12cm, tính độ dải đoạn MD?
Bài 2:
a: \(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Bài 3.giải các phương trình sau bằng cách đưa về phương trình tích.
a) (3x+1)(7x+3)=(5x-7)(3x+1)
b) x^2+10x+25-4x(x+5)=0
c) (4x-5)^2(16x^2-25)=0
d) (4x+3)^2=4(x^2-2x+1)
e) x^2-11x=28=0
f) 3x^3-3x^2-6x=0
1Rút gọn biểu thức a) (3x+1)^2+(3x-1)^2-2(3x+1)(3x-1) b) 8(3^2+1)(3^4+1)...(2^16+1) c ) (2^2+1)(2^4+1)...(2^32+1) 2 Tìm x biết a) x(2x-1)-2x+1=0 b) 3x(x-1)=x-1 c) 3(x+2)-x^2-2x=0 d) x^3+x=0 3 Phân tích thành nhân tử a) 4x^3-x b) 6x^2-12xy+6y^2-24z^2
Bài 2:
a: Ta có: \(x\left(2x-1\right)-2x+1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
a,4x-8/2x2+1=0 b,x2-x-6/x-3=0 c,x+5/3x-6-1/2=2x-3/2x-4 d,12/1-9x2=1-3x/1+3x-1+3x/1-3x
giúp mình với ;-;
ghi này chả hiểu j bn ak
ghi rõ ra coi
Bài 1: Tìm x
a) (2x-1) ² - 25 = 0
b) 3x (x-1) + x - 1 = 0
c) 2(x+3) - x ² - 3x = 0
d) x(x - 2) + 3x - 6 = 0
e) 4x ² - 4x +1 = 0
f) x +5x ² = 0
g) x ² 2x -3 = 0
a) \(\left(2x-1\right)^2-25=0\)
⇔ \(\left(2x-1\right)^2-5^2=0\)
⇔ \(\left(2x-1-5\right)\left(2x-1+5\right)=0\)
⇒ \(2x-1-5=0\) hoặc \(2x-1+5=0\)
⇔ \(x=3\) hoặc \(x=-2\)
Bài 1: Tìm x
a) (2x-1) ² - 25 = 0
<=> (2x-1)2 = 25
<=> 2x-1 = 5 hay 2x-1 =-5
<=> 2x= 6 hay 2x=-4
<=> x=3 hay x= -2
Vậy S={3; -2}
b) 3x (x-1) + x - 1 = 0
<=> (x-1)(3x+1)=0
<=> x-1=0 hay 3x+1=0
<=> x=1 hay 3x=-1
<=> x=1 hay x=\(\dfrac{-1}{3}\)
Vậy S={1;\(\dfrac{-1}{3}\)}
c) 2(x+3) - x ² - 3x = 0
<=> 2(x+3)- x(x+3)=0
<=> (x+3)(2-x)=0
<=> x+3=0 hay 2-x=0
<=> x=-3 hay x=2
Vậy S={-3;2}
d) x(x - 2) + 3x - 6 = 0
<=> x(x-2)+3(x-2)=0
<=> (x-2)(x+3)=0
<=> x-2=0 hay x+3=0
<=> x=2 hay x=-3
Vậy S={2;-3}
e) 4x ² - 4x +1 = 0
<=> (2x-1)2=0
<=> 2x-1=0
<=> 2x=1
<=> x=\(\dfrac{1}{2}\)
Vậy S={\(\dfrac{1}{2}\)}
f) x +5x2 = 0
<=> x(1+5x)=0
<=>x=0 hay 1+5x=0
<=> x=0 hay 5x=-1
<=> x=0 hay x= \(\dfrac{-1}{5}\)
Vậy S={0;\(\dfrac{-1}{5}\)}
g) x ²+ 2x -3 = 0
<=> x2-x+3x-3=0
<=> x(x-1)+3(x-1)=0
<=> (x-1)(x+3)=0
<=> x-1=0 hay x+3=0
<=> x=1 hay x=-3
Vậy S={1;-3}
b) \(\text{3x (x-1) + x - 1 = 0}\)
\(\Rightarrow3x\left(x-1\right)+\left(x-1\right)=0\)
\(\Rightarrow\left(3x+1\right)\left(x-1\right)=0\\\)
\(\Rightarrow\left[{}\begin{matrix}3x+1=0\\x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=1\end{matrix}\right.\)
c) \(\text{2(x+3) - x ² - 3x = 0}\)
\(\Rightarrow2\left(x+3\right)-x\left(x+3\right)=0\\ \Rightarrow\left(2-x\right)\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}2-x=0\\x+3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
d) \(\text{x(x - 2) + 3x - 6 = 0}\)
\(\Rightarrow x(x - 2) + 3(x - 2) = 0\\ \Rightarrow\left(x+3\right)\left(x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
e)
\(\text{4x ² - 4x +1 = 0}\\ \Rightarrow\left(2x-1\right)^2=0\\ \Rightarrow2x-1=0\\ \Rightarrow x=0,5\)
f) \(\text{x +5x ² = 0}\)
\(\Rightarrow x\left(x+5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
viết lại câu g đi bạn
Phân tích đa thức thành nhân tử
a) x³-3x²+3x-1-8y³
b) x⁴-4x³+8x²-16x+16
Giải pt
a) 6(x-3) +(x-1) ²-(x+1) ²=2x
b) (x+4) ²-(x+8) (x-8) =96
c) 4x²-1=(2x+1) (3x-5)
d) 2x²-x=3-6x
e) 2x³+5x²-3x=0
f) x(2x-7) -4x+14=0
g) (2x-5) ²-(x+2) ²=0
h) (3x+1) (7x+3) =(5x-7) (3x+1)
i) x²+10x+25-4x(x+5) =0
k))(4x-5) ²-2(16x²-25) =0
l) (4x+3) ²=4(x²-2x+1)
m) x²-11x+28=0
n) 3x³-3x²-6x=0
o) x²-9x+20=0
\(o,x^2-9x+20=0\)
\(\Leftrightarrow x^2-4x-5x+20=0\)
\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)
\(n,3x^3-3x^2-6x=0\)
\(\Leftrightarrow3x\left(x^2-x-2\right)=0\)
\(\Leftrightarrow3x\left(x^2+x-2x-2\right)=0\)
\(\Leftrightarrow3x\left[x\left(x+1\right)-2\left(x+1\right)\right]=0\)
\(\Leftrightarrow3x\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}3x=0\\x+1=0\end{cases}}\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=0\\x=-1\end{cases}}\\x=2\end{cases}}\)
\(m,x^2-11x+28=0\)
\(\Leftrightarrow x^2-4x-7x+28=0\)
\(\Leftrightarrow x\left(x-4\right)-7\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-7=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=7\end{cases}}\)
\(l,\left(4x+3\right)^2=4\left(x^2-2x+1\right)\)
\(\Leftrightarrow16x^2+24x+9=4x^2-8x+4\)
\(\Leftrightarrow16x^2+24x+9-4x^2+8x-4=0\)
\(\Leftrightarrow12x^2+32x+5=0\)
\(\Leftrightarrow\left(x+\frac{1}{6}\right)\left(x+\frac{5}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{6}=0\\x+\frac{5}{2}=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{6}\\x=-\frac{5}{2}\end{cases}}\)
Tìm x:
a, 3x (4x -3) - 2x (5-6x) = 0
b, 5 (2x-3) + 4x (x-2) + 2x (3-2x) = 0
c, 3x (2-x) + 2x (x-1) = 5x (x+3)
d, 3x (x+1) - 5x (3-x) + 6(x2 + 2x + 3) = 0
a) 3x(4x - 3) - 2x(5 - 6x) = 0
=> 6x2 - 9x - 10x + 12x2 = 0
=> 18x2 - 19x = 0
=> x(18x - 19) = 0
=> \(\orbr{\begin{cases}x=0\\18x-19=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{19}{18}\end{cases}}\)
b) 5(2x - 3) + 4x(x - 2) + 2x(3 - 2x) = 0
=> 10x - 15 + 4x2 - 8x + 6x - 4x2 = 0
=> 8x - 15 = 0
=> 8x = 15
=> x = 15 : 8 = 15/8
c) 3x(2 - x) + 2x(x - 1) = 5x(x + 3)
=> 6x - 3x2 + 2x2 - 2x = 5x2 + 15x
=> 4x - x2 - 5x2 - 15x = 0
=> -6x2 - 11x = 0
=> -x(6x - 11) = 0
=> \(\orbr{\begin{cases}-x=0\\6x-11=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\frac{11}{6}\end{cases}}\)
a) \(3x\left(4x-3\right)-2x\left(5-6x\right)=0\)
\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)
\(\Leftrightarrow-19x=0\Leftrightarrow x=0\)
b) \(5\left(2x-3\right)+4x\left(x-2\right)+2x\left(3-2x\right)=0\)
\(\Leftrightarrow10x-15+4x^2-8x+6x-4x^2=0\)
\(\Leftrightarrow8x-15=0\Leftrightarrow x=\frac{15}{8}\)
d) \(3x\left(x+1\right)-5x\left(3-x\right)+6\left(x^2+2x+3\right)=0\)
\(\Leftrightarrow3x^2+3x-15x+5x^2+6x^2+12x+18=0\)
\(\Leftrightarrow14x^2+18=0\)
Mà \(14x^2+18>0\)nên pt vô nghiệm