Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trần hồng phúc
Xem chi tiết
Hoàng Tony
Xem chi tiết
Hoàng Lê Bảo Ngọc
26 tháng 11 2016 lúc 10:22

Đặt \(a=x+y,b=y+z,c=z+x\)

Khi đó nếu P = Q tức là \(a^2+b^2+c^2=ab+bc+ac\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a=b=c\)

Từ đó bạn suy ra nhé ! ^^

Hoàng Tony
26 tháng 11 2016 lúc 11:34

thanks you very muck :))

Phạm Thị Thùy Linh
Xem chi tiết
Nguyễn Thị Thùy Dung
10 tháng 3 2019 lúc 8:23

có điều kiện j k thế

Phạm Thị Thùy Linh
10 tháng 3 2019 lúc 8:24

đề vậy thôi, nhưng cám ơn nha. mk biết lm oii

Sáng
Xem chi tiết
Kuro Kazuya
2 tháng 1 2017 lúc 1:56

Ta có \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}\)

\(\Rightarrow\frac{x^2}{y+z}+x+\frac{y^2}{x+z}+y+\frac{z^2}{x+y}+z\ge\frac{x+y+z}{2}+x+y+z\)

\(\Rightarrow x\left(\frac{x}{y+z}+1\right)+y\left(\frac{y}{x+z}+1\right)+z\left(\frac{z}{x+y}+1\right)\ge\frac{3}{2}\left(x+y+z\right)\)

\(\Rightarrow x\left(\frac{x+y+z}{y+z}\right)+y\left(\frac{y+x+z}{x+z}\right)+z\left(\frac{z+x+y}{x+y}\right)\ge\frac{3}{2}\left(x+y+z\right)\)

\(\Rightarrow\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\ge\frac{3}{2}\left(x+y+z\right)\)

\(\Rightarrow\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{3}{2}\) (Theo BĐT Nesbitt )

\(\Rightarrow\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{3}{2}\) (đpcm)

Quỳnh Như
Xem chi tiết
tth_new
26 tháng 4 2019 lúc 9:45

P/s: Em mới lớp 7 thôi nên có gì sai mong anh/chị thông cảm ạ.

Khai triển ra ta được: \(Q=x^2+y^2+z^2+3\left(xy+xz+yz\right)\)

\(P=2\left(x^2+y^2+z^2\right)+2\left(xy+yz+zx\right)\)

Do P = Q nên P - Q = 0.Hay:\(x^2+y^2+z^2-xy-yz-zx=0\)

Nhân 2 vào hai vế suy ra \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Ta có: \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}}\) .Suy ra \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

Dấu "=' xảy ra khi x = y = z (đpcm)

giải pt bậc 3 trở lên fr...
26 tháng 7 2018 lúc 20:08

chứng minh ngược lại bạn ơi

chứng minh x=y=z thì p=q 

Nguyễn Thị Ngọc Linh
Xem chi tiết
Đặng Ngọc Quỳnh
19 tháng 9 2020 lúc 5:03

Đặt \(x+y=a;y+z=b;z+x=c\)thì P=Q có nghĩa là:

\(a^2+b^2+c^2-ab-bc-ac=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)

\(\Leftrightarrow a=b=c\Leftrightarrow x+y=y+z=z+x\Leftrightarrow x=y=z\)

Khách vãng lai đã xóa
Là Tôi Tôi
Xem chi tiết
Nguyễn Ngọc An
Xem chi tiết
bui manh huy
28 tháng 8 2017 lúc 20:10

em lp 6  a ơi

Cao Minh Tuấn
Xem chi tiết