tìm nghiệm của đa thức 2x^2 -x
Tìm nghiệm của đa thức g(x)=x^2-3x-4
Tìm nghiệm của đa thức h(x)=2x^3-x^2-2x+1
\(x^2-3x-4=0\)
\(< =>x^2+x-4x-4=0\)
\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)
\(< =>\left(x-4\right)\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
\(2x^3-x^2-2x+1=0\)
\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)
\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)
\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)
1) Tìm nghiệm của đa thức: 2x2+2x+1.
2) tìm nghiệm của đa thức D(x)=x^2-6x+15
\(2x^2+2x+1=0\)
\(< =>4x^2+4x+2=0\)
\(< =>\left(2x\right)^2+2.2x.1+1^2+1=0\)
\(< =>\left(2x+1\right)^2+1=0\)
Do \(\left(2x+1\right)^2\ge0=>\left(2x+1\right)^2+1>0\)
=> pt voo nghieemj
\(x^2-6x+15=0\)
\(< =>x^2-2.x.3+9+6=0\)
\(< =>\left(x-3\right)^2+6=0\)
Do \(\left(x-3\right)^2\ge0=>\left(x-3\right)^2+6>0\)
=> da thuc vo nghiem
Tìm nghiệm của đa thức f (x)= 2x-1 . Xác định a để nghiệm của đa thức
f(x) cũng là nghiệm của đa thức g(x)=4x^2-ax+1
f(x)=0
=>x=1/2
g(1/2)=0
=>1-1/2a+1=0
=>2-1/2a=0
=>a=4
Cho đa thức f(x)=2x+b
a, Tìm b để f(x) nhận x=-2 là nghiệm
b, Tìm a để f(x) có nghiệm gấp đôi nghiệm của đa thức g(x)=2x+1
\(f\left(-2\right)=0\)
\(=>2.\left(-2\right)+b=0\)
\(=>-4+b=0 =>b=4\)
1) Tìm nghiệm của đa thức: 2x2+2x+1.
2)
a) Viết tập hợp S tất cả các nghiệm của đa thức x3-2x2-5x+6 biết rằng đa thức trên không có quá 3 nghiệm.
b) Viết tập hợp các nghiệm của đa thức x3 + 3x2 - 6x - 8.
1) Ta có: 2x2 + 2x + 1 = 0
<=> x2 + (x2 + 2x + 1) = 0
<=> x2 + (x+ 1)2 = 0 <=> x = x+ 1 = 0 (Vì x2 \(\ge\) 0 và (x+ 1)2 \(\ge\) 0 với mọi x)
x = x+ 1 => 0 = 1 Vô lý
Vậy đa thức đã cho ko có nghiệm
2) a) x3-2x2-5x+6 = 0
=> x3 - x2 - x2 + x - 6x + 6 = 0
=> ( x3 - x2) - (x2 - x) - (6x - 6) = 0 => x2.(x- 1) - x(x - 1) - 6(x - 1) = 0
=> (x - 1).(x2 - x - 6) = 0 => (x -1).(x2 - 3x + 2x - 6) = 0
=> (x- 1).[x(x - 3) + 2.(x - 3)] = 0 => (x - 1).(x + 2).(x - 3) = 0
=> x- 1= 0 hoặc x + 2 = 0 hoặc x - 3 = 0
=> x = 1 hoặc x = -2 hoặc x = 3
Đa thức đã cho có 3 nghiệm là: 1; -2 ; 3
b) x3 + 3x2 - 6x - 8 = 0
=> x3 + x2 + 2x2 + 2x - 8x - 8 = 0
=> x2.(x + 1) + 2x.(x + 1) - 8 (x + 1) = 0
=> (x+ 1). [x2 + 2x - 8] = 0
=> (x+1).[x2 + 4x - 2x - 8] = 0 => (x +1).[x.(x+4) - 2.(x+4)] = 0
=> (x +1). (x -2). (x+4) = 0
=> x+ 1 hoặc x - 2 = 0 hoặc x+ 4 = 0
=> x = -1 hoặc x = 2 hoặc x = -4
Đa thức đã cho có 3 nghiệm là -1; 2; -4
a)Tìm nghiệm của đa thức sau:F(x)=2x-1; G(x)=7x2+14 ;;;;b)Tìm đa thức bậc 2 của F(x) biết:F(0)=2;F(-1)=6 và một nghiệm của đa thức bằng 2
Câu 2:
a)Tìm đa thức P biết:
P-(5x^4-xyz)=xy+2x^4-6xyz+654
b)Tìm nghiệm của đa thức: f(x)=x^2-2x
a.
\(P-\left(5x^4-xyz\right)=xy+2x^4-6xyz+654\)
\(\Rightarrow P=5x^4-xyz+xy+2x^4-6xyz+654\)
\(\Rightarrow P=7x^4-7xyz+xy+654\)
b.
\(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
1) Tìm nghiệm của đa thức M(x)= -2x+3
2) Tìm hệ số a để đa thức P(x)= ax+1 có nghiệm là -2
Giải
1) M(x) = -2x+3 ->-2x+3 =0
->x= 3/2
Vậy nghiệm của M(x) là 3/2
2) P(x) =ax+1 có nghiệm là -2
-> P(-2) =a*(-2)+1=0
-> a= 1/2
Vậy hệ số của P(x) là 1/2
Cho đa thức : A(x) = 2x^3 + x - 3x^2 - 2x^3 - 1 + 3x^2
a) Thu gọn và xác định bậc của đa thức A(x)
b) Tìm nghiệm của đa thức A(x)
`a, A(x) = 2x^3 + x - 3x^2 - 2x^3 - 1 + 3x^2`
`= (2x^3-2x^3) +(-3x^2+ 3x^2) + x-1`
`= x-1`
Bậc của đa thức : `1`
`b,` Ta có ` A(x)= x-1=0`
`x-1=0`
`=>x=0+1`
`=>x=1`
a) \(A\left(x\right)=2x^3+x-3x^2-2x^3-1+3x^2\)
\(A\left(x\right)=\left(2x^3-2x^3\right)-\left(3x^2-3x^2\right)+x-1\)
\(A\left(x\right)=x-1\)
Đa thức có bật 1
b) \(x-1=0\)
\(\Rightarrow x=1\)
Vậy đa thức có nghiệm là 1
Cho đa thức D(x)=x^2+2x
Tìm nghiệm của đa thức trên
๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉๖²⁴ʱƒɾëë༉ 甘道夫工程采用激光女可靠
cho D(x)=0
suy ra x^2+2x=0
xx+2x=0
x(x+2)=0
suy ra x=0
và x+2=0
x=0-2
x=-2
vậy x=0; x=-2 là nghiệm của đa thức trên