Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hạnh Hồng
Xem chi tiết
Vũ Mai Anh
Xem chi tiết
Minh Hiếu
Xem chi tiết
Nguyễn Hoàng Minh
7 tháng 10 2021 lúc 21:39

\(1,\)

\(a,\) Với \(n=1\Leftrightarrow5+2\cdot1+1=8⋮8\left(đúng\right)\)

Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow5^k+2\cdot3^{k-1}+1⋮8\)

Với \(n=k+1\)

\(5^n+2\cdot3^{n-1}+1=5^{k+1}+2\cdot3^k+1\\ =5^k\cdot5+2\cdot3^k+1\\ =5^k\cdot2+2\cdot3^k+5^k\cdot3+1\\ =2\left(5^k+3^k\right)+5^k+2\cdot5^{k-1}+1+2\cdot3^{k-1}-2\cdot3^{k-1}\\ =2\left(5^k+3^k\right)+\left(5^k+2\cdot3^{k-1}+1\right)-2\left(3^{k-1}+5^{k-1}\right)\)

Vì \(5^k+3^k⋮\left(5+3\right)=8;5^{k-1}+3^{k-1}⋮\left(5+3\right)=8;5^k+2\cdot3^{k-1}+1⋮8\) nên \(5^{k+1}+2\cdot3^k+1⋮8\)

Theo pp quy nạp ta được đpcm

\(b,\) Với \(n=1\Leftrightarrow3^3+4^3=91⋮13\left(đúng\right)\)

Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow3^{k+2}+4^{2k+1}⋮13\)

Với \(n=k+1\)

\(3^{n+2}+4^{2n+1}=3^{k+3}+4^{2k+3}\\ =3^{k+2}\cdot3+16\cdot4^{2k+1}\\ =3^{k+2}\cdot3+3\cdot4^{2k+1}+13\cdot4^{2k+1}\\ =3\left(3^{k+2}+4^{2k+1}\right)+13\cdot4^{2k+1}\)

Vì \(3^{k+2}+4^{2k+1}⋮13;13\cdot4^{2k+1}⋮13\) nên \(3^{k+3}+4^{2k+3}⋮13\)

Theo pp quy nạp ta được đpcm

Nguyễn Hoàng Minh
7 tháng 10 2021 lúc 21:45

\(1,\)

\(c,C=6^{2n}+3^{n+2}+3^n\\ C=36^n+3^n\cdot9+3^n\\ C=\left(36^n-3^n\right)+\left(3^n\cdot9+2\cdot3^n\right)\\ C=\left(36^n-3^n\right)+3^n\cdot11\)

Vì \(36^n-3^n⋮\left(36-3\right)=33⋮11;3^n\cdot11⋮11\) nên \(C⋮11\)

\(d,D=1^n+2^n+5^n+8^n\)

Vì \(1^n+2^n+5^n⋮\left(1+2+5\right)=8;8^n⋮8\) nên \(D⋮8\)

Nguyễn Hoàng Minh
7 tháng 10 2021 lúc 21:55

\(2,\)

Ta thấy:\(1+2+...+2002=\left(2002+1\right)\left(2002-1+1\right):2=2003\cdot2002:2⋮11\left(2002⋮11\right)\)

Do đó \(1^{2002}+2^{2002}+...+2002^{2002}⋮1+2+...+2002⋮11\)

 

Lê Ngọc Huyền
Xem chi tiết
Lê Thị Hạ Vy
Xem chi tiết
Lê Thị Mẫn
Xem chi tiết
NguyenVanDay
13 tháng 7 2018 lúc 15:49

Bài 2  : 

a)    C = ( n + 1 )( n + 2 )( n + 3 )( n + 4 )

<=> C = [( n + 1 ).( n + 4 )].[( n + 2 ).( n + 3 )] + 1

<=> C = ( n2 + 5n + 4 ).( n2 + 5n + 6 ) + 1 

Đặt t = n2 + 5n + 5

Suy ra : C = ( t - 1 ).( t + 1 ) + 1

         => C = t2 - 1 + 1

       <=> C = t2    hay C = ( n2 + 5n + 5 )2

Vì n thuộc Z => n2 + 5n + 5 thuộc Z => C là số chính phương 

                                                                             ( đpcm )

b)     E = n2 + ( n + 1 )2 + n( n + 1 )2

 <=> E = n2 - 2n( n + 1 ) + ( n + 1 )2 + 2n( n + 1 ) + n2( n +1 )2

 <=> E = [ n - ( n + 1 )]2 + 2n( n + 1 ) + [ n( n + 1 )]2

 <=> E = ( n - n - 1 )2 + 2n( n + 1 ) + [ n( n + 1 )]2

 <=> E = 12 + 2.1.n( n + 1 ) + [ n( n + 1 )]2

 <=> E = [ n( n + 1 ) + 1 ]2

 <=> E = ( n2 + n + 1 )2

Vì n thuộc Z => n2 + n + 1 thuộc Z => E là số chính phương

                                                                        ( đpcm )

Nguyễn Thế Phúc Anh
Xem chi tiết
An Trịnh Hữu
8 tháng 7 2017 lúc 22:26

\(=>\left(\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)

Phân tích vế trái ta được ( hằng đẳng thức) :>

\(=\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2+\dfrac{2}{ac}+\dfrac{2}{bc}+\left(\dfrac{1}{c}\right)^2\)

\(=\dfrac{1}{a^2}+\dfrac{2}{ab}+\dfrac{1}{b^2}+\dfrac{2}{ac}+\dfrac{2}{bc}+\dfrac{1}{c^2}\)

\(=>\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ac}+\dfrac{2}{ab}+\dfrac{2}{bc}=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)

\(=>2.\left(\dfrac{1}{ac}+\dfrac{1}{ab}+\dfrac{1}{bc}\right)=0\)

\(=>\dfrac{b}{abc}+\dfrac{c}{abc}+\dfrac{a}{abc}=0\)

\(=>a+b+c=0.abc=0\)

\(=>a+b=-c\)

\(=>-\left(a+b\right)=c\)

Thay vào ta có:

\(a^3+b^3+c^3=a^3+b^3-\left(a+b\right)^3\)

\(=-3a^2b-3ab^2=3\left(-a^2b-ab^2\right)⋮3\)

CHÚC BẠN HỌC TỐT NHA....

Nguyễn Ngọc Mai
Xem chi tiết
Cuồng Song Joong Ki
Xem chi tiết
Nguyễn Linh Chi
21 tháng 10 2019 lúc 0:13

3. Câu hỏi của Hoàng Đức Thịnh - Toán lớp 8 - Học toán với OnlineMath

Khách vãng lai đã xóa