Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan PT
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 3 2021 lúc 0:38

Bạn coi lại đề, hệ này ko giải được

Pt bên dưới là \(xy\left(y^2+3y+3\right)=4\) thì giải được

Nguyễn Việt Lâm
21 tháng 3 2021 lúc 0:48

Nhận thấy \(x=0\) ko là nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}2y+3=\dfrac{8}{x^3}\\y^3+3y^2+3y=\dfrac{4}{x}\end{matrix}\right.\)

Cộng vế:

\(y^3+3y^2+5y+3=\dfrac{8}{x^3}+\dfrac{4}{x}\)

\(\Leftrightarrow\left(y+1\right)^3+2\left(y+1\right)=\left(\dfrac{2}{x}\right)^3+2\left(\dfrac{2}{x}\right)\)

Đặt \(\left\{{}\begin{matrix}\dfrac{2}{x}=a\\y+1=b\end{matrix}\right.\) \(\Rightarrow a^3-b^3+2a-2b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+2\right)=0\Leftrightarrow a=b\)

\(\Leftrightarrow y+1=\dfrac{2}{x}\Rightarrow\dfrac{8}{x^3}=\left(y+1\right)^3\)

Thế vào pt đầu:

\(2y+3=\left(y+1\right)^3\)

\(\Leftrightarrow y^3+3y^2+y-2=0\Leftrightarrow\left(y+2\right)\left(y^2+y-1\right)=0\)

\(\Leftrightarrow..\)

VUX NA
Xem chi tiết
VUX NA
18 tháng 8 2021 lúc 18:42

các bn ơi giúp mình với

 

loancute
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 5 2021 lúc 17:07

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x+y^2+y=8\\\left(x^2+x\right)\left(y^2+y\right)=12\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x^2+x=u\\y^2+y=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u+v=8\\uv=12\end{matrix}\right.\) \(\Rightarrow\left(u;v\right)=\left(6;2\right);\left(2;6\right)\)

TH1: \(\left\{{}\begin{matrix}x^2+x=6\\y^2+y=2\end{matrix}\right.\) \(\Rightarrow...\)

TH2: ... tương tự

Đoàn Thị Thanh Loan
Xem chi tiết
Akai Haruma
3 tháng 8 2019 lúc 19:19

Câu 1:

HPT \(\Leftrightarrow \left\{\begin{matrix} (x+y)+xy=11\\ (x+y)^2-3xy-2(x+y)=-31\end{matrix}\right.\)

Đặt \(\left\{\begin{matrix} x+y=a\\ xy=b\end{matrix}\right.\) thì hệ trở thành:

\( \left\{\begin{matrix} a+b=11\\ a^2-3b-2a=-31\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=11-a\\ a^2-3b-2a+31=0\end{matrix}\right.\)

\(\Rightarrow a^2-3(11-a)-2a+31=0\)

\(\Leftrightarrow a^2+a-2=0\Leftrightarrow (a-1)(a+2)=0\)

\(\Rightarrow \left[\begin{matrix} a=1\\ a=-2\end{matrix}\right.\)

Nếu $a=1\Rightarrow b=11-a=10$

Như vậy $x+y=1; xy=10$

\(\Rightarrow x(1-x)=10\Leftrightarrow x^2-x+10=0\Leftrightarrow (x-\frac{1}{2})^2=-\frac{39}{4}< 0\) (vô lý)

Nếu \(a=-2\Rightarrow b=11-a=13\)

Như vậy $x+y=-2; xy=13$

$\Rightarrow x(-2-x)=13\Leftrightarrow x^2+2x+13=0\Leftrightarrow (x+1)^2=-12< 0$ (vô lý)

Vậy HPT vô nghiệm.

Akai Haruma
3 tháng 8 2019 lúc 19:28

Câu 2:

HPT \(\Leftrightarrow \left\{\begin{matrix} xy-(x-y)=-3\\ (x-y)^2-(x-y)+3xy=6\end{matrix}\right.\)

Đặt \(xy=a; x-y=b\) thì hệ trở thành:

\(\left\{\begin{matrix} a-b=-3\\ b^2-b+3a=6\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=b-3\\ b^2-b+3a-6=0\end{matrix}\right.\)

\(\Rightarrow b^2-b+3(b-3)-6=0\)

\(\Leftrightarrow b^2+2b-15=0\Leftrightarrow (b-3)(b+5)=0\)

\(\Rightarrow \left[\begin{matrix} b=3\\ b=-5\end{matrix}\right.\)

Nếu $b=3=x-y\Rightarrow a=xy=b-3=0$

\(\Rightarrow (x,y)=(0,-3); (3,0)\)

Nếu \(b=x-y=-5\Rightarrow a=xy=b-3=-8\)

\(\Rightarrow (y-5)y=-8\)

\(\Leftrightarrow y^2-5y+8=0\Leftrightarrow (y-2,5)^2=-1,75< 0\) (vô lý)

Vậy $(x,y)=(0,-3)$ hoặc $(3,0)$

Akai Haruma
3 tháng 8 2019 lúc 19:30

Câu 3:

HPT \(\Leftrightarrow \left\{\begin{matrix} x^2+4y^2=8\\ x=4-2y\end{matrix}\right.\Rightarrow (4-2y)^2+4y^2=8\)

\(\Leftrightarrow 8y^2-16y+8=0\Leftrightarrow y^2-2y+1=0\)

\(\Leftrightarrow (y-1)^2=0\Rightarrow y=1\)

Thay $y=1$ có $x=4-2y=2$

Vậy $(x,y)=(2,1)$

Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Thành Trương
27 tháng 1 2020 lúc 20:43

Hỏi đáp Toán

Khách vãng lai đã xóa
Nguyễn Thành Trương
27 tháng 1 2020 lúc 20:59

Hỏi đáp Toán

Khách vãng lai đã xóa
Nguyễn Thành Trương
27 tháng 1 2020 lúc 20:48

Hỏi đáp Toán

Khách vãng lai đã xóa
Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 7 2021 lúc 22:09

\(\left\{{}\begin{matrix}x^3y^2+x^2y^3+x^3y+2x^2y^2+xy^3-30=0\\x^2y+xy^2+xy+x+y-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2y^2\left(x+y\right)+xy\left(x+y\right)^2-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left[xy+x+y\right]-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}xy\left(x+y\right)=u\\xy+x+y=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}uv-30=0\\u+v-11=0\end{matrix}\right.\)  \(\Rightarrow\left(u;v\right)=\left(6;5\right);\left(5;6\right)\)

TH1: \(\left\{{}\begin{matrix}xy\left(x+y\right)=6\\xy+x+y=5\end{matrix}\right.\)

Theo Viet đảo \(\Rightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)hoặc \(\left\{{}\begin{matrix}x+y=2\\xy=3\end{matrix}\right.\)(vô nghiệm)

TH2: \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}x+y=5\\xy=1\end{matrix}\right.\) \(\Rightarrow...\) hoặc \(\left\{{}\begin{matrix}x+y=1\\xy=5\end{matrix}\right.\) (vô nghiệm)

2 câu dưới hình như em hỏi rồi?

Linh Nguyen
Xem chi tiết
 Huyền Trang
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 3 2021 lúc 5:11

Ta có: \(8-y^2=\left|xy-4\right|\ge0\Rightarrow y^2\le8\) (1)

Xét phương trình: \(x^2+2=xy\Leftrightarrow x^2-xy+2=0\)

\(\Leftrightarrow x^2-xy+\dfrac{y^2}{4}-\dfrac{y^2}{4}+2=0\)

\(\Leftrightarrow\dfrac{y^2}{4}-2=\left(x-\dfrac{y}{2}\right)^2\ge0\Rightarrow y^2\ge8\) (2)

Từ (1); (2) \(\Rightarrow\left\{{}\begin{matrix}y^2\ge8\\y^2\le8\end{matrix}\right.\) \(\Rightarrow y^2=8\Rightarrow y=...\)

Thế vào giải ra x

Chii Phương
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 1 2021 lúc 18:02

Biến đổi pt dưới:

\(x^2-4x+4+y\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+y\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2+y\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=2-y\end{matrix}\right.\)

Thay vào pt đầu giải bt