\(\left(a^2+4\right)^2-16a^2\)
Rút gọn các biểu thức sau:
\(A=\dfrac{a^2-1}{3}\sqrt{\dfrac{9}{\left(1-a\right)^2}}\) với a < 1
\(B=\sqrt{\left(3a-5\right)^2}-2a+4\) với a < \(\dfrac{1}{2}\)
\(C=4a-3-\sqrt{\left(2a-1\right)^2}\) với a < 2
\(D=\dfrac{a-2}{4}\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\) với a < 2
a) Ta có: \(A=\dfrac{a^2-1}{3}\cdot\sqrt{\dfrac{9}{\left(1-a\right)^2}}\)
\(=\dfrac{\left(a+1\right)\cdot\left(a-1\right)}{3}\cdot\dfrac{3}{\left|1-a\right|}\)
\(=\dfrac{\left(a+1\right)\left(a-1\right)}{1-a}\)
=-a-1
b) Ta có: \(B=\sqrt{\left(3a-5\right)^2}-2a+4\)
\(=\left|3a-5\right|-2a+4\)
\(=5-3a-2a+4\)
=9-5a
c) Ta có: \(C=4a-3-\sqrt{\left(2a-1\right)^2}\)
\(=4a-3-\left|2a-1\right|\)
\(=4a-3-2a+1\)
\(=2a-2\)
d) Ta có: \(D=\dfrac{a-2}{4}\cdot\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\)
\(=\dfrac{a-2}{4}\cdot\dfrac{4a^2}{\left|a-2\right|}\)
\(=\dfrac{a^2\left(a-2\right)}{-\left(a-2\right)}\)
\(=-a^2\)
a)\(\sqrt{4\left(a-3\right)^2}vớia\ge3\)
b)\(\sqrt{a^2\left(a+1\right)^2}vớia>0\)
c)\(\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}vớia< 0,b\ne0\)
a) \(\sqrt{4\left(a-3\right)^2}=2\left(a-3\right)=2a-6\)
b) \(\sqrt{a^2\left(a+1\right)^2}=a\left(a+1\right)=a^2+a\)
c) \(\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\dfrac{1}{\sqrt{8}\left|a\right|}=\dfrac{1}{-\sqrt{8}a}=\dfrac{-\sqrt{8}}{8a}\)
a: \(\sqrt{4\left(a-3\right)^2}=2\cdot\left(a-3\right)=2a-6\)
b: \(\sqrt{a^2\left(a+1\right)^2}=a\left(a+1\right)=a^2+a\)
c: \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}=\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\sqrt{\dfrac{2}{16a^2}}=-\dfrac{\sqrt{2}}{4a}\)
Phân tích
\(\left(a^3-b^3\right)+\left(a-b\right)^2\)
\(\left(x^2+1\right)^2-4x^2\)
\(\left(y^3+8\right)+\left(y^2-4\right)\)
\(\left(64a^3+125b^3\right)+5b\left(16a^2-25b^2\right)\)
\(\left(x-a\right)^4-\left(x+a\right)^4\)
\(\left(a^3-b^3\right)+\left(a-b\right)^2=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)^2\)
\(=\left(a-b\right)\left(a^2+ab+b^2-a-b\right)\)
\(\left(x^2+1\right)^2-x^4=\left(x^2-x^2+1\right)\left(x^2+x^2+1\right)=2x^2+1\)
\(y^3+8+y^2-4=\left(y+2\right)\left(y^2-2y+4\right)+\left(y-2\right)\left(y+2\right)\)
\(=\left(y+2\right)\left(y^2-y+2\right)\)
\(64a^3+125b^3+5b\left(16a^2-25b^2\right)=\left(4a+5b\right)\left(16a^2-20ab+25b^2\right)+5b\left(....\right)\)
\(=\left(4a+5b\right)16a^2\)
\(\left(x-a\right)^4-\left(x+a\right)^4=\left(x^2-2ax+a^2\right)^2-\left(x^2+2ax+a^2\right)^2\)
\(=2\left(a^2+x^2\right)-4ax\)
GPT:
a,\(\left(2x-1\right)^4+\left(2x-3\right)^4=0\)
b,\(a^4-4a^3+12^2-16a+8=0\)
c,\(a^4+12a^2+2=0\)
d,\(\left(x^2-4x\right)^2+2\left(x-2\right)^2-43=0\)
a) \(\left(2x-1\right)^4+\left(2x-3\right)^4=0\)
\(\Leftrightarrow\left(2x-1\right)^4+\left(2x-3\right)^4=0^4\)
\(\Leftrightarrow\left(2x-1\right)+\left(2x-3\right)=0\)
\(\Rightarrow\hept{\begin{cases}2x-1=0\\2x-3=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\left(0+1\right):2\\x=\left(0+3\right):2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=\frac{3}{2}\end{cases}}\)
a)\(\left(2x-1\right)^4+\left(2x-3\right)^4=0\\ \)
do \(\left(2x-1\right)^4\ge0\)và \(\left(2x-3\right)^4\ge0\)
=> \(\hept{\begin{cases}\left(2x-1\right)^4=0\\\left(2x-3\right)^4=0\end{cases}\Rightarrow\hept{\begin{cases}2x-1=0\\2x-3=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{2}\\x=\frac{3}{2}\end{cases}}}\).
Vậy x vừa = 1/2 vừa =3/2 => vô lý => không tồn tại nghiệm
Tính
a, \(\frac{16a^3.b^4.c^2}{4.\left(a.b^2.c\right)^2}\)
b, \(\frac{\left(15\right)^{20}.\left(45\right)^7.27^3}{\left(225\right)^{70}.5^7.3^{10}}\)
Cho a+b+c=0,abc khác 0.Tính:
B=\(\frac{\left(a^2+b^2-c^2\right)\left(b^2+c^2-a^2\right)\left(c^2+a^2-b^2\right)}{16a^2b^2c^2}\)
Rút gọn phân thức:
\(a,\dfrac{8a^{n+2}+a^{n-1}}{16a^{n+4}+4a^{n+2}+a^n}\)
\(b,\dfrac{\left(n+1\right)!-n!}{\left(n+1\right)!+n!}\)
tính
a, \(\frac{16a^3.b^4.c^5}{4.\left(a.b^2.c\right)^2}\)
nói cách làm nhé
Rút gọn phân thức:
\(a,\dfrac{8a^{n+2}+a^{n-1}}{16a^{n+4}+4a^{n+2}+a^n}\)
\(b,\dfrac{\left(n+1\right)!-n!}{\left(n+1\right)!+n!}\)
b) \(\dfrac{\left(n+1\right)!-n!}{\left(n+1\right)!+n!}=\dfrac{n!.\left(n+1\right)-n!}{n!\left(n+1\right)+n!}=\dfrac{n!\left(n+1-1\right)}{n!\left(n+1+1\right)}=\dfrac{n}{n+2}\)
a) \(\dfrac{8a^{n+2}+a^{n-1}}{16a^{n+4}+4a^{n+2}+a^n}=\dfrac{8a^{n-1+3}+a^{n-1}}{16a^{n-1+5}+4a^{n-1+3}+a^{n-1+1}}\)
\(=\dfrac{8a^{n-1}.a^3+a^{n-1}}{16a^{n-1}a^5+4a^{n-1}a^3+a^{n-1}a}=\dfrac{a^{n-1}\left(8a^3+1\right)}{a^{n-1}\left(16a^5+4a^3+a\right)}\)
\(=\dfrac{8a^3+1}{16a^5+4a^3+a}\)