Chứng minh rằng : nếu a , b , c là độ dài 3 cạnh tam giác thì
2a^2b^2+2b^2c^2+2a^2c^2>0
Chứng minh rằng : nếu a , b , c là độ dài 3 cạnh tam giác thì
\(2a^2b^2+2b^2c^2+2a^2c^2-a^4-b^4-c^4>0\)
Ta có: A = a4 + b4 + c4 - 2a2b2 - 2b2c2 - 2a2c2 = (a2)2 + (b2)2 + (c2)2 + 2a2b2 - 2b2c2 - 2a2c2 + 4a2b2 = (a2 + b2 - c2)2 - 4a2b2
= (a2 + b2 - c2 - 2ab).(a2 + b2 - c2 + 2ab) (1)
Vì a; b;c là 3 cạnh của tam giác nên c > |a - b| => c2 > (|a - b|)2 = (a - b)2
=> c2 > a2 + b2 - 2ab => a2 + b2 - c2 - 2ab < 0 (2)
lại có : a+ b > c => (a+ b) 2 > c2 => a2 + b2 - c2 + 2ab > 0 (3)
Từ (1)(2)(3) => A < 0 => đpcm
Ta có: A = a4 + b4 + c4 - 2a2b2 - 2b2c2 - 2a2c2 = (a2)2 + (b2)2 + (c2)2 - 2a2b2 - 2b2c2 - 2a2c2 + 4a2b2 = (a2 + b2 - c2)2 - 4a2b2
= (a2 + b2 - c2 - 2ab).(a2 + b2 - c2 + 2ab) (1)
Vì a; b;c là 3 cạnh của tam giác nên c > |a - b| => c2 > (|a - b|)2 = (a - b)2
=> c2 > a2 + b2 - 2ab => a2 + b2 - c2 - 2ab < 0 (2)
lại có : a+ b > c => (a+ b) 2 > c2 => a2 + b2 - c2 + 2ab > 0 (3)
Từ (1)(2)(3) => A < 0 => đpcm
Cho biết
\(2a^2b^2+2b^2c^2+2a^2c^2-a^4-b^4-c^4\)
Chứng minh nếu abc là độ dài 3 cạnh của một tam giác thì A>0
Cho biết
\(2a^2b^2+2b^2c^2+2a^2c^2-a^4-b^4-c^4\)
Chứng minh nếu abc là độ dài 3 cạnh của một tam giác thì A>0
Cho biết
\(2a^2b^2+2b^2c^2+2a^2c^2-a^4-b^4-c^4\)
Chứng minh nếu abc là độ dài 3 cạnh của một tam giác thì A>0
Cho biết
\(2a^2b^2+2b^2c^2+2a^2c^2-a^4-b^4-c^4\)
Chứng minh nếu abc là độ dài 3 cạnh của một tam giác thì A>0
CM RẰNG : Nếu A,B,C là độ dài 3 cạnh tam giác thì B =\(A^4+B^4+C^4-2A^2B^2-2B^2C^2-2C^2A^2\)
phân tích ĐTTNT :A=2a^2b^2+2b^2c^2+2a^2c^2-a^4-b^4-c^4. nếu a,b,c là độ dài 3 cạnh tam giác thì CM A >0
bạn ơi a2 là a^2 bạn nhé,mấy cái khác cũng tương tự,vì mình lười bấm nhé)
A=2a2b2+2b2c2+2a2c2−a4−b4−c4
⟺A=4a2c2−(a4+b4+c4−2a2b2+2a2c2−2b2c2)
⟺A=4a2c2−(a2−b2+c2)2
⟺A=(2ac+a2−b2+c2)(2ac−a2+b2−c2)
⟺A=((a+c)2−b2)(b2−(a−c)2)
⟺A=(a+b+c)(a+c−b)(b+a−c)(b−a+c)
Mà a, b, ca, b, c là 33 cạnh của tam giác nên:a+b+c>0;a+c−b>0;b+a−c>0;b−a+c>0⟹(a+b+c)(a+c−b)(b+a−c)(b−a+c)>0
⟹A>0 (Dpcm)
Cho a,b,c là độ dài của 3 cạnh của 1 tam giác
Chứng minh : \(2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4>0\)
VT=2a2b2+2a2c2+2b2c2-a4-b4-c4
=a2b2+a2c2+b2c2+a2.(b2-a2)+b2.(c2-b2)+c2.(a2-c2)
=a2b2+a2c2+b2c2+a2.(b+a)(b-a)+b2.(c+b)(c-b)+c2.(a+c)(a-c)
Ta lại có : a+b>c=>a-c>-b
b+c>a=>b-a>-c
c+a>b=>c-b>-a
(BĐT tam giác)
=>VT>a2b2+a2c2+b2c2+a2.c.(-c)+b2.a.(-a)+c2.b.(-b)
=0
=>VT>0 =>dpcm
CMR: NẾU a,b,c là độ dài các cạnh của tam giác thì:
B=\(a^4+b^4+c^4-2a^2b^2-2a^2c^2-2b^2c^2< 0\)