Cho \(\Delta\)ABC vuông tại A.Đường cao AH. D và E lần lượt là hình chiếu của H trên AB và AC.Gọi M là trung điểm BC. CMR: AM\(\perp\)DE tại K
\(\dfrac{1}{AB}+\dfrac{1}{HC}=\dfrac{1}{AK}\)
Cho tam giác ABC vuông tại A, đường cao AH.D là hình chiếu của H trên AB,E là hình chiếu của H trên AC.CMR:\(\dfrac{S.DEIK}{S.ABC}\)=\(\dfrac{1}{2}\) với I,K lần lượt là trung điểm của HC và HB
Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
ΔHDB vuông tại D có DK là trung tuyến
nên KH=KB=KD
ΔHEC vuông tại E có EI là trung tuyến
nên EI=IH=IC
\(\widehat{IED}=\widehat{IEH}+\widehat{DEH}\)
\(=\widehat{IHE}+\widehat{DAH}\)
\(=\widehat{HAB}+\widehat{HBA}=90^0\)
=>IE vuông góc ED(1)
\(\widehat{KDE}=\widehat{KDH}+\widehat{EDH}\)
\(=\widehat{KHD}+\widehat{EAH}=\widehat{HAC}+\widehat{HCA}=90^0\)
=>KD vuông góc DE(2)
Từ (1), (2) suy ra DKIE là hình thang vuông
\(S_{DKIE}=\dfrac{1}{2}\left(DK+EI\right)\cdot ED\)
\(=\dfrac{1}{2}\cdot AH\cdot\left(\dfrac{1}{2}HC+\dfrac{1}{2}HB\right)\)
\(=\dfrac{1}{4}\cdot AH\cdot BC\)
=>\(\dfrac{S_{DKIE}}{S_{ABC}}=\dfrac{1}{4}:\dfrac{1}{2}=\dfrac{1}{2}\)
cho tam giác ABC vuông tại A(AB<AC), đường cao AH. Gọi E và F là hình chiếu của H trên trên AB và AC; O là trung điểm của BC và AO cắt EF tại I.
a) CMR: \(\dfrac{AH^2}{BE.CF}=\dfrac{AB}{AC}+\dfrac{AC}{AB}\)
b) Tính \(\dfrac{AI}{HB}+\dfrac{AI}{HC}\)
Bài 2: Cho ΔABC có AB=6cm, AC=8cm, BC=10c, Kẻ đường cao AH của ΔABC.
a) Tính độ dài AH và BH
b)AH=BC.sinB.cosB
c) lấy điểm M bất kì trên cạnh BC. Gọi hình chiếu của M trên AB,AC lần lượt là E và K. Chứng minh : \(\dfrac{1}{AM^2}+\dfrac{1}{AK^2+AE^2}\)
d) Hỏi M ở vị trí nào trên cạnh BC thì EK có độ dài nhỏ nhất
Cho tam giác ABC vuông tại A, đường cao AH. E, F lần lượt là hình chiếu của H trên AB, AC. Gọi M là trung điểm BC. Chứng minh \(S_{AEMF}=\dfrac{1}{2}S_{ABC}\)
Cái bài này thì có lẽ bạn nên chứng minh AM⊥FE là nó ra liền à
Tứ giác AEHF là hình chữ nhật (3 góc vuông) \(\Rightarrow HE=AF\) và \(AE=HF\)
\(S_{ABC}=S_{ABH}+S_{ACH}=\dfrac{1}{2}HE.AB+\dfrac{1}{2}HF.AC=\dfrac{1}{2}AB.AF+\dfrac{1}{2}AC.AE\)
Gọi K là trung điểm AB \(\Rightarrow MK\) là đường trung bình tam giác ABC \(\Rightarrow\left\{{}\begin{matrix}MK=\dfrac{1}{2}AC\\MK\perp AB\end{matrix}\right.\)
Gọi D là trung điểm AC \(\Rightarrow MD\) là đtb tam giác ABC \(\Rightarrow\left\{{}\begin{matrix}MD=\dfrac{1}{2}AB\\MD\perp AC\end{matrix}\right.\)
\(S_{AEMF}=S_{ABC}-\left(S_{BME}+S_{CMF}\right)=S_{ABC}-\left(\dfrac{1}{2}MK.BE+\dfrac{1}{2}MD.CF\right)\)
\(=S_{ABC}-\dfrac{1}{2}\left(\dfrac{1}{2}AC.\left(AB-AE\right)+\dfrac{1}{2}AB.\left(AC-AF\right)\right)\)
\(=S_{ABC}-\dfrac{1}{2}\left(AB.AC-\left(\dfrac{1}{2}AC.AE+\dfrac{1}{2}AB.AF\right)\right)\)
\(=S_{ABC}-\dfrac{1}{2}\left(2S_{ABC}-S_{ABC}\right)=\dfrac{1}{2}S_{ABC}\) (đpcm)
Cho tam giác ABC vuông tại A, đường cao AH. Biết HC = 4cm , HB = 3cm
a) Tính AB , AH
b) Gọi D và E lần lượt là hình chiếu của H trên AB , AC
Chứng minh AD.DB + AE.EC = AH\(^2\)
c) Đường thẳng vuông góc với DE tại E cắt BC tại K.
Chứng minh K là trung điểm của CH
Cho tam giác ABC vuông tại A, đường cao AH. Biết HC = 4cm , HB = 3cm
a) Tính AB , AH
b) Gọi D và E lần lượt là hình chiếu của H trên AB , AC
Chứng minh AD.DB + AE.EC = AH\(^2\)
c) Đường thẳng vuông góc với DE tại E cắt BC tại K.
Chứng minh K là trung điểm của CH
Cho tam giác ABC vuông tại A, đường cao AH. Biết HC = 4cm , HB = 3cm
a) Tính AB , AH
b) Gọi D và E lần lượt là hình chiếu của H trên AB , AC
Chứng minh AD.DB + AE.EC = AH22
c) Đường thẳng vuông góc với DE tại E cắt BC tại K.
Chứng minh K là trung điểm của CH
cho tam giác vuông ABC tại A, AH là đường cao,D và E lần lượt là hình chiếu của H trên AB và AC . M là trung điểm của BC
C/m DE vuông góc với AM
Bạn tham khảo bài làm của bạn Nguyễn Võ Thảo vy phía dưới nhé
Câu hỏi của Nguyễn Desmond - Toán lớp 8 - Học toán với OnlineMath
Cho một tam giác ABC vuông tại A có \(\widehat{B}=\dfrac{1}{2}\widehat{C}\). Kẻ đường cao AH sao cho cạnh AH vuông góc với cạnh huyền BC tại H. Các hình chiếu của AB và AC trên BC lần lượt là BH và HC. Biết HC = 1,6cm.
a) Tính góc B và C, và các tỉ số lượng giác của chúng nó.
b*) Tính độ dài các cạnh BC, AB và AC.
Gợi ý: Sử dụng các hệ thức về tỉ số lượng giác của góc nhọn và một trong bốn hệ thức về cạnh góc vuông và đường cao trong tam giác vuông để tính.
c) Tính độ dài các cạnh AH và BH.
d) Hãy chứng minh rằng: Cả ba tam giác vuông ABC, HBA và HAC đồng dạng với nhau.
e*) Chứng minh rằng: \(\dfrac{\sin\widehat{HAC}}{\cos\widehat{HBA}}\div\dfrac{\tan\widehat{HAC}}{\cot\widehat{ABC}}=\dfrac{csc^2\widehat{ABC}}{sec^2\widehat{ABC}\cdot\cot\widehat{HBA}}\)
Gợi ý:
1. Secant - sec α nghịch đảo với cos α
2. Cosecant - csc α nghịch đảo với sin α