1/4 × 2/6 × 3/8 × 4/10 × 5/12.......30/62 × 61/64 = 2x
Tính hợp lý
1-2-3+4+5-6-7+8+9-10-11+12+..........+61-62-63+64
1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + 9 - 10 - 11 + 12 + ... + 61 - 62 - 63 + 64 ( 64 số )
= ( 1 - 2 - 3 + 4 ) + ( 5 - 6 - 7 + 8 ) + ( 9 - 10 - 11 + 12 ) + ... + ( 61 - 62 - 63 + 64 ) ( 16 nhóm )
= 0 + 0 + 0 + ... + 0 ( 16 số 0 )
= 0 . 16
= 0
Ta có: (1/4)*(2/6)*(3/8)*(4/10)*(5/12)*...*(30/62)*(31/64)=2^x. Tìm x
Ta có: \(2^x=\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\dfrac{4}{10}\cdot\dfrac{5}{12}\cdot...\cdot\dfrac{30}{62}\cdot\dfrac{31}{64}\)
\(\Leftrightarrow2^x=\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot31}{2\cdot\left(2\cdot3\cdot4\cdot...\cdot31\right)\cdot64}\)
\(\Leftrightarrow2^x=\dfrac{1}{2}\cdot\dfrac{1}{64}=\dfrac{1}{128}\)
\(\Leftrightarrow2^x=\dfrac{1}{2^6}\)
\(\Leftrightarrow2^{x+6}=1\)
\(\Leftrightarrow x+6=0\)
hay x=-6
Vậy: x=-6
`1/4 . 2/6 . 3/8 ... . 30/62 .31/64 =2^x`
`-> (1.2.3....30.31)/(4.6.8....62.64)=2^x`
`-> (1.(2.3...31))/(2.(2.3.4...31).32)=2^x`
`-> 1/(2.32)=2^x`
`-> 1/64=2^x`
`-> 1/(2^6)=2^x`
`-> x=-6`.
(x-1)x+2=(x-1)x+4
1/ 4 . 2/6 . 3/8 . 4/10 . 5/15 .... 30/62 . 31/64= 2x
a) Ta có: \(\left(x-1\right)^{x+2}-\left(x-1\right)^{x+4}=0\)
\(\Leftrightarrow\left(x-1\right)^x\cdot\left(x-1\right)^2-\left(x-1\right)^x\cdot\left(x-1\right)^4=0\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\cdot\left[1-\left(x-1\right)^2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
b) Ta có: \(\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\dfrac{4}{10}\cdot\dfrac{5}{15}\cdot...\cdot\dfrac{30}{62}\cdot\dfrac{31}{64}=2x\)
\(\Leftrightarrow2x=\dfrac{1}{64}\)
hay \(x=\dfrac{1}{128}\)
tìm x biết :
(1/4).(2/6).(3/8).(4/10).(5/12)....(30/62).(31/64) = 2^x
Có: \(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}...\frac{30}{62}.\frac{31}{64}=\frac{1}{2.2}.\frac{2}{2.3}.\frac{3}{2.4}...\frac{30}{2.31}.\frac{31}{2.32}=\frac{1}{2}.\frac{1}{2}.\frac{1}{2}...\frac{1}{2}.\frac{1}{2}.\frac{1}{32}\)
\(=\frac{1}{2^{31}.2^5}=\frac{1}{2^{36}}=2^x\)\(\Rightarrow1=2^x.2^{36}=2^{36+x}\)\(\Rightarrow2^{36+x}=2^0\Rightarrow36+x=0\Rightarrow x=-36\)
Tìm x, biết \(\dfrac{1}{4}.\dfrac{2}{6}.\dfrac{3}{8}.\dfrac{4}{10}.\dfrac{5}{12}...\dfrac{30}{62}.\dfrac{31}{64}=2^x\)
=>\(1\cdot\dfrac{2}{4}\cdot\dfrac{3}{6}\cdot...\cdot\dfrac{31}{62}\cdot\dfrac{1}{64}=2^x\)
=>\(2^x=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot...\cdot\dfrac{1}{2}\cdot\dfrac{1}{64}=\left(\dfrac{1}{2}\right)^{30}\cdot\left(\dfrac{1}{2}\right)^6=\dfrac{1}{2^{36}}\)
=>x=-36
tìm x :
\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot\frac{4}{10}\cdot\frac{5}{12}...\frac{30}{62}\cdot\frac{31}{64}=2x\)
Tìm số nguyên n, biết rằng:
\(\dfrac{1}{4} . \dfrac{2}{6} . \dfrac{3}{8} .\dfrac{4}{10} . \dfrac{5}{12} .... \dfrac{30}{62} . \dfrac{31}{64} = 2^{n}\)\(\)
\(\dfrac{1}{2.2}.\dfrac{2}{2.3}.....\dfrac{31}{64}=2^x\\ =>\dfrac{1}{2.2.2.....2.64}=2^x\\ \dfrac{1}{2^{30}.26}=2^x\\ =>\dfrac{1}{2^{36}}=2^x\\ =>2^{-36}=2^x\\ =>x=-36\)
Ta có: \(2^n=\dfrac{1}{4}.\dfrac{2}{6}.\dfrac{3}{8}.\dfrac{4}{10}.\dfrac{5}{12}....\dfrac{30}{62}.\dfrac{31}{64}\)
⇔ \(2^n=\dfrac{1.2.3.4....31}{2.\left(2.3.4.....1\right).64}=\)
⇔ \(2^n=\dfrac{1}{2}.\dfrac{1}{64}=\dfrac{1}{128}\) \(\Leftrightarrow\) \(2^n=\dfrac{1}{2^6}\)
⇔ \(2^{x+6}=1\)
⇔ \(x+6=0\)
⇒ \(\left\{{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
1/4×2/6×3/8×4/10×5/12×.....×30/62×1/64=2^x
Tìm x
1/4 × 2/6 × 3/8 × 4/10 × 5/12.......30/62 × 31/64 = 2x
\(\Rightarrow\dfrac{1}{2.2}.\dfrac{2}{2.3}.\dfrac{3}{2.4}.\dfrac{4}{2.5}.\dfrac{5}{2.6}...\dfrac{30}{2.31}.\dfrac{31}{2.32}\) = 2x
\(\Rightarrow\dfrac{1}{2}\left(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.\dfrac{5}{6}...\dfrac{30}{31}.\dfrac{31}{32}\right)\) = 2x
\(\Rightarrow\dfrac{1}{2}\left(\dfrac{1.2.3.4.5...30.31}{2.3.4.5...31.32}\right)\) = 2x
\(\Rightarrow\dfrac{1}{2}.\dfrac{1}{32}=2x\)
\(\Rightarrow2x=\dfrac{1}{64}\)
\(\Rightarrow x=\dfrac{\dfrac{1}{64}}{2}=\dfrac{1}{64}.\dfrac{1}{2}=\dfrac{1}{128}\)
bạn ơi giải thích giúp mình với [ 1/2x có bằng 4x hay không ạ]