giải hpt : căn (2x^2+6xy+5y^2) +5=căn (2x^2+6xy+5y^2+14x+20y+5) và y^2-y+x^3=0
giải hpt: √(2x^2+6xy+5y^2)+5=√(2x^2+6xy+5y^2+14x+20y+5)
và y^2-y+x^3=0
giải hpt: \(\sqrt{2x^2+6xy+5y^2}+5=\sqrt{2x^2+6xy+5y^2+14x+20y+5}\)
và y^2-y+x^3=0
giải hpt:
\(\sqrt{\text{2x^2+6xy+5y^2}}\)+5=\(\sqrt{\text{2.x^2+6xy+5y.^2+14x+20y+5}}\)
và và y^2-y+x^3=0
giải hpt: √2x2+6xy+5y2+5=√2x2+6xy+5y2+14x+20y+52x2+6xy+5y2+5=2x2+6xy+5y2+14x+20y+5
và y^2-y+x^3=0
8X^2 - 6XY( 2X-Y) + 6X= 2Y^3 -6Y^2+ 18Y-14
Y^2 - 6Y + 5 + căn bậc ba (Y+1) (X^2 + 8) = 0
Chứng minh: 3 + 2x - 4y + 6xy - 10x^2 +5y^2 > 0 với mọi giá trị x,y
1. giải hpt 5(x^2+y^2)=6xy+2 và 2x^2+3x=2y^2+y+3
cần gấp
\(\left\{{}\begin{matrix}5x^2+5y^2-6xy=2\\2x^2+3x-2y^2-y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x^2+5y^2-6xy=2\\4x^2+6x-4y^2-2y=6\end{matrix}\right.\)
\(\Rightarrow9x^2+y^2-6xy+6x-2y+1=9\)
\(\Leftrightarrow\left(3x-y+1\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-y+1=3\\3x-y+1=-3\end{matrix}\right.\)
Đến đây chia 2 trường hợp và thế vào 1 trong 2 pt để giải
thực hiện phép tính
a) (x+3y)(2x^2y -6xy^2)
b) (6x^5y^2 -9x^4y^3 +15x^3y^4) : 3x^3y^2
c) (2x+3)^2 + (2x+5)^2 -2(2x+3)(2x+5)
d) (y+3)^3 -(3-y)^2 -54y
a) (x + 3y) (2x2y - 6xy2)
= (x + 3y) + 2xy (x - 3y)
= 2xy [(x + 3y) (x - 3y)]
= 2xy (x2 - 3y2)
b) (6x5y2 - 9x4y3 + 15x3y4) : 3x3y2
= (6x5y2 : 3x3y2) + (-9x4y3 : 3x3y2) + (15x3y4 : 3x3y2)
= [(6 : 3) (x5 : x3) (y2 : y2)] + [(-9 : 3) (x4 : x3) (y3 : y2)] + [(15 : 3) (x3 : x3) (y4 : y2)]
= 2x2 + (-3xy) + 5y2
= 2x2 - 3xy + 5y2
#Học tốt!!!
thực hiện phép tính
a) (x+3y)(2x^2y -6xy^2)
b) (6x^5y^2 -9x^4y^3 +15x^3y^4) : 3x^3y^2
c) (2x+3)^2 + (2x+5)^2 -2(2x+3)(2x+5)
d) (y+3)^3 -(3-y)^2 -54y
a)
b) \(\left(6x^5y^2-9x^4y^3+15x^3y^4\right):3x^3y^2\)
\(=2x^2-3xy+5y^2.\)
c)
Chúc bạn học tốt!