Cho A=x4-2x3-x2+ax+b
Xác định các phần hệ số a, b để đa thức A là bình phương của 1 đa thức.
Xác định hệ số a,b để đa thức x4 + 1 chia hết cho đa thức x2 + ax + b
Đặt phép chia sau đo tính số dư
Vì x4+1 chia hết cho x2+ax +b ∀ x
⇒ số dư = 0 ⇒ từng cái = 0 ⇒ a= ; b =
xác định các hệ số a,b để đa thức
\(A=x^4-2x^3+3x^2+ax+b\) là bình phuong của 1 đa thức
\(\left(x^2-x+1\right)^2=x^4+x^2+1-2x^3+2x^2-2x=x^4-2x^3+3x^2-2x+1\)
Vậy a = -2; b = 1.
Xác định các hệ số a,b sao cho các đa thức sau viết được dưới dạng bình phương của một đa thức nào đó
a) x4 + 2x3 + 3x2 + ax + b
b) x4 + ax3 + bx2 - 8x + 1
làm ơn giúp mình bài toán hình phần d với cảm ơn nhiều( hình lớp 7 đó)
Xác định các hệ số a,b để đa thức sau là bình phương của một đa thức :
\(A=x^4-2x^3-x^2+ax+b\)
Ta có:\(A=x^4-2x^3-x^2+ax+b\)
\(A=x^3\left(x-2\right)-x\left(x-a\right)+b\)
Để A là đa thức thì x - a = x -2
Do đó a=2;b=0
Ta có:A=x4−2x3−x2+ax+b
A=x3(x−2)−x(x−a)+b
Để A là đa thức thì x - a = x -2
Do đó a=2;b=0
\(A=x^4-2x^3-x^2+ax+b\)
\(A=x^3\left(x-2\right)-x\left(x-a\right)+bA\)
\(x-a=x-2\)
\(=>a=2;b=0\)
~ Hok tốt ~
Xác định hệ số a;b để đa thức A= x4-2x3+3x2+ax+b là bình phương 1 đa thức
(Dùng phương pháp đồng nhất hệ số)
Phần dư của phép chia đa thức x 4 – 2 x 3 + x 2 – 3x + 1 cho đa thức x 2 + 1 có hệ số tự do là
A. 2
B. 3
C. 1
D. 4
Đa thức dư là – x + 1 có hệ số tự do là 1.
Đáp án cần chọn là: C
1.Xác định hệ số a ,b để đa thức \(A=x^4-2x^3+3x^2+ax+b\)là bình phương của 1 đa thức
2.CMR biểu thức \(P=x\left(x+a\right)\left(x-a\right)\left(x+2a\right)+a^4\)là bình phương của một đa thức
Cho đa thức A = 5 x2y + xy – xy2 - x2y + 2xy + x2y + xy + 6. Thu gọn rồi xác định bậc của đa thức.
a/ Tìm đa thức B sao cho A + B = 0
b/ Tìm đa thức C sao cho A + C = -2xy + 1
Bài 6: Cho đa thức F(x) = 2x3 – x5 + 3x4 + x2 - x3 + 3x5 – 2x2 - x4 + 1
\(A=5x^2y-xy^2+4xy+6\) bậc : 3
a)\(B=-5x^2y+xy^2-4xy-6\)
b)\(=>C=-2xy+1-5x^2y+xy^2-4xy-6\)
\(C=-5x^2y+xy^2-6xy-5\)
Xác định hệ số a,b,c để biểu thức A= x4 -2x3 +ax +b là bình phương của một đa thức
A là đa thức có hệ số cao nhất là 1
=> A là bình phương của đa thức: \(\left(x^2+cx+d\right)^2\)
Ta có:\(\left(x^2+cx+d\right)^2=x^4+2cx^3+\left(2d+c^2\right)x^2+2cdx+d^2\)
=> \(x^4-2x^3+ax+b=x^4+2cx^3+\left(2d+c^2\right)x^2+2cdx+d^2\)
Cân bằng hệ số hai vế ta có:
\(2c=-2;2d+c^2=0;2cd=a;d^2=b\)
<=> \(c=-1;d=-\frac{1}{2};a=1;b=\frac{1}{4}\)
Vậy : \(A=x^4-2x^3+x+\frac{1}{4}=\left(x^2-x-\frac{1}{2}\right)^2\)
Tìm a, b để đa thức A ( x ) = 2 x 3 – x 2 + a x + b chia hết cho đa thức B ( x ) = x 2 – 1
A(x) chia hết cho B(x) khi (a + 2)x + b – 1 là đa thức 0
Vậy a + 2 = 0 và b – 1 = 0 ⇒ a = -2 và b = 1