Rút gọn :
a) \(\sqrt{4+2\sqrt{3}}-\sqrt{5+2\sqrt{6}}+\sqrt{2}\)
b) \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
Rút gọn :
a) \(\sqrt{4+2\sqrt{3}}-\sqrt{5+2\sqrt{6}}+\sqrt{2}\)
b) \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
\(a,\sqrt{4+2\sqrt{3}}-\sqrt{5+2\sqrt{6}}+\sqrt{2}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{2}\)
\(=\sqrt{3}+1-\sqrt{3}-\sqrt{2}+\sqrt{2}=1\)
\(b,\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}\)
\(=\sqrt{25}=5\)
rút gọn A)\(\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5-3}\right)^2}}\)
B) \(\sqrt{6+2\sqrt{5-\sqrt{\left(2\sqrt{3+1}\right)^2}}}\)
C) \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(c,\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+5\sqrt{3}+5\left(5-\sqrt{3}\right)}\)
\(=\sqrt{4+5\sqrt{3}+25-5\sqrt{3}}\)
\(=\sqrt{29}\)
Rút gọn biểu thức:
a)\(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
b)\(\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)
c)\(5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}\)
d)\(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
e)\(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\)
a) đặt \(A=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
nhân cả hai vế với \(\sqrt{2}\), ta được:
\(\sqrt{2}A=\sqrt{2}\sqrt{4-\sqrt{7}}-\sqrt{2}\sqrt{4+\sqrt{7}}\)
\(=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{\left(1-\sqrt{7}\right)^2}-\sqrt{\left(1+ \sqrt{7}\right)^2}\)
\(=\left|1-\sqrt{7}\right|-\left|1+\sqrt{7}\right|\)
\(=\sqrt{7}-1-\sqrt{7}-1\)
\(=-2\)
\(\Rightarrow A=-\frac{2}{\sqrt{2}}=-\sqrt{2}\)
a) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
\(=\frac{\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}\)
\(=\frac{\sqrt{7}-1-\sqrt{7}-1}{\sqrt{2}}\)
\(=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)
1.Rút gọn giểu thức
\(a)\sqrt{\sqrt{5}-\sqrt{3}-\sqrt{29-6\sqrt{20}}}\)
\(b)\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
\(c)\sqrt{4\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
a) \(\sqrt{\sqrt{5}-\sqrt{3}-\sqrt{29-6\sqrt{20}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3}-\sqrt{\left(\sqrt{20}-3\right)}}\)
\(=\sqrt{\sqrt{5}-\sqrt{3}-2\sqrt{5}+3}\)
\(=\sqrt{3-\sqrt{3}-\sqrt{5}}\)
Bài 1 : Rút gọn các biểu thức sau :
\(a,\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)
\(b,\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
b) \(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)\(=\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}=\sqrt{4+5}=3\)
Rút gọn :
\(A=\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)
\(B=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{5}}}}\)
\(C=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(D=\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
\(E=\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}\)
câu E dễ nhất nên mình làm trước , các câu còn lại làm tương tự ( biến đổi thành hằng đẳng thức rồi rút gọn ) :
\(E=\sqrt{9-2.3.\sqrt{6}+6}+\sqrt{24-2.2\sqrt{6}.3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)
\(=3-\sqrt{6}+2\sqrt{6}-3\) ( vì \(3-\sqrt{6}>0;2\sqrt{6}-3>0\) )
\(=\sqrt{6}\)
A = \(\dfrac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)
A = \(\dfrac{\sqrt{3}+\sqrt{\left(\sqrt{2}+3\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)
A = \(\dfrac{\sqrt{3}+\sqrt{2}+3-\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{2}+\sqrt{5}+1-\left(\sqrt{5}+\sqrt{2}\right)}\)
A = \(\dfrac{\sqrt{3}+\sqrt{2}+3-\sqrt{3}-\sqrt{2}}{\sqrt{2}+\sqrt{5}+1-\sqrt{5}-\sqrt{2}}\) = \(\dfrac{3}{1}\) = \(3\)
C = \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
C = \(\left(4+\sqrt{15}\right).\left(\sqrt{40-10\sqrt{15}}-\sqrt{24-6\sqrt{15}}\right)\)
C = \(\left(4+\sqrt{15}\right)\left(\sqrt{\left(5-\sqrt{15}\right)^2}-\sqrt{\left(\sqrt{15}-3\right)^2}\right)\)
C = \(\left(4+\sqrt{15}\right)\left(5-\sqrt{15}-\left(\sqrt{15}-3\right)\right)\)
C = \(\left(4+\sqrt{15}\right)\left(5-\sqrt{15}-\sqrt{15}+3\right)\)
C = \(\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
C = \(32-8\sqrt{15}+8\sqrt{15}-30=2\)
D = \(\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
D = \(\left(\sqrt{30-10\sqrt{5}}-\sqrt{6-2\sqrt{5}}\right)\left(3+\sqrt{5}\right)\)
D = \(\left(\sqrt{\left(5-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}\right)\left(3+\sqrt{5}\right)\)
D = \(\left(5-\sqrt{5}-\left(\sqrt{5}-1\right)\right)\left(3+\sqrt{5}\right)\)
D = \(\left(5-\sqrt{5}-\sqrt{5}+1\right)\left(3+\sqrt{5}\right)\)
D = \(\left(6-2\sqrt{5}\right)\left(3+\sqrt{5}\right)\)
D = \(18+6\sqrt{5}-6\sqrt{5}-10=8\)
E = \(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{5}}\)
E = \(\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3\sqrt{3}-2\sqrt{2}\right)^2}\)
E = \(3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)
Rút gọn biểu thức:
\(a,\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}\)
\(b,\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
a) \(=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{16-2.4\sqrt{2}+2}}}\)
\(=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+4-\sqrt{2}}}\)\(=\sqrt{6-2\sqrt{3+2\sqrt{3}+1}=\sqrt{6-2\sqrt{\left(\sqrt{3}+1\right)^2}}=\sqrt{6-2\left(1+\sqrt{3}\right)}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}=1+\sqrt{3}\)
b) Tương tự a) đ/s =5
Bài 1: Rút gọn các biểu thức:
a) \(A=\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)
b) \(B=\)\(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
A=\(\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}=\frac{\sqrt{3}+3+\sqrt{2}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{5}+1-\sqrt{7+2\sqrt{10}}}\)=\(\frac{\sqrt{2}\left(\sqrt{3}+3+\sqrt{2}-\sqrt{5+2\sqrt{6}}\right)}{\sqrt{2}\left(\sqrt{2}+\sqrt{5}+1-\sqrt{7+2\sqrt{10}}\right)}\)
A=\(\frac{\sqrt{6}+3\sqrt{2}+2-\sqrt{10+4\sqrt{6}}}{2+\sqrt{10}+\sqrt{2}-\sqrt{14+4\sqrt{10}}}=\frac{\sqrt{6}+3\sqrt{2}+2-\sqrt{6}-2}{2-\sqrt{10}+\sqrt{2}-\sqrt{10}-2}=\frac{3\sqrt{2}}{\sqrt{2}}=3\)
Rút gọn
1) \(B=\sqrt{\sqrt{7}+6+\sqrt{13-2\sqrt{64-6\sqrt{7}}}}\)
2) \(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
3) \(D=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
Bài 1: Rút gọn biểu thức:
a) \(\left(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{2}+\sqrt{20}-\dfrac{5}{4}\sqrt{\dfrac{4}{5}+\sqrt{5}}\right)\)
b) \(\dfrac{1}{3}\sqrt{48}+3\sqrt{75}-\sqrt{27}-10\sqrt{1\dfrac{1}{3}}\)
c) \(\dfrac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)
d) \(\sqrt{\dfrac{3}{4}}+\sqrt{\dfrac{1}{3}}+\sqrt{\dfrac{1}{12}}\)
Bài 2: Giải các phương trình sau:
a) \(x^2+4x+5=2\sqrt{2x+3}\)
b) \(x^2+9x+20=2\sqrt{3x+10}\)
c) \(x^2+7x+14=2\sqrt{x+4}\)
d) \(4\sqrt{x+1}=x^2-5x+14\)
e) \(\sqrt{6-x}=3x-4\)
f) \(\sqrt{5x-9}=9-2x\)
Mọi người làm ơn giúp mình với. Mình đang cần gấp ạ. Cảm ơn mọi người rất nhiều
Bài 1:
a) Ta có: \(\left(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{2}\sqrt{20}-\dfrac{5}{4}\sqrt{\dfrac{4}{5}}+\sqrt{5}\right)\)
\(=\left(\sqrt{5}+\sqrt{5}-\dfrac{5}{4}\cdot\dfrac{2}{\sqrt{5}}+\sqrt{5}\right)\)
\(=3\sqrt{5}-\dfrac{1}{2}\sqrt{5}\)
\(=\dfrac{5}{2}\sqrt{5}\)
c) Ta có: \(\dfrac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)
\(=\dfrac{\sqrt{35}\left(\sqrt{5}-\sqrt{7}+2\sqrt{2}\right)}{\sqrt{35}}\)
\(=2\sqrt{2}+\sqrt{5}-\sqrt{7}\)
Bài 2:
e) ĐKXĐ: \(\dfrac{4}{3}\le x\le6\)
Ta có: \(\sqrt{6-x}=3x-4\)
\(\Leftrightarrow6-x=\left(3x-4\right)^2\)
\(\Leftrightarrow9x^2-24x+16+6-x=0\)
\(\Leftrightarrow9x^2-25x+22=0\)
\(\Delta=\left(-25\right)^2-4\cdot9\cdot22=625-792< 0\)
Vậy: Phương trình vô nghiệm