Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Hiếu
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 8 2021 lúc 20:57

Đề bài yêu cầu gì?

Trần Nguyễn Bảo Ngọc
24 tháng 12 2022 lúc 17:45

 

 M=9x2+6y2+18x−12xy−12y−27

=(9x2−12xy+4y2)+( 18x−12y)+9+2y2−36

=[(3x)2 −2.3x.2y+(2y)2]+(18x−12y)+ 9+2y2− 36

=(3x−2y)2+2.(3x−2y) .3+32+2y2−36

=(3x−2y+3)2+2y2−36

∀x;y ta có :

(3x−2y+3)2≥0

2y2≥0

⇒(3x−2y+3)2+2y2≥0

⇒(3x-2y+3)2+2y2-36≥-36

⇒M≥-36

Dấu = xảy ra ⇔{3x−2y+3=02y2=0

⇔{x=-1 y=0

Vậy MinM=-36⇔{x=-1 y=0

Do đó : M≥−36

 Chọn đáp án D

Ngô Hiếu
Xem chi tiết
Ngô Anh Huyền Trân
Xem chi tiết
Duyên Nấm Lùn
Xem chi tiết
Nguyễn Như Nam
18 tháng 10 2016 lúc 18:20

Bài 1: Thực hiện phép tính.

a) \(\left(x+2y\right)\left(x-2y\right)-5-x^2=x^2-4y^2-5-x^2=-4y^2-5\)

Bài 2: Phân tích đa thức thành nhân tử.

a) \(14x^3y^3-7x^2y+21x^2y^5=7x^2y\left(2xy^2-1+3y^4\right)\)

b) \(18x\left(1-x\right)-12y+12xy=18x\left(1-x\right)-12y\left(1-x\right)=6\left(1-x\right)\left(3x-2y\right)\)

c) \(9x^2-y^2+1-6x=\left(9x^2-6x+1\right)-y^2=\left(3x-1\right)^2-y^2=\left(3x-1-y\right)\left(3x-1+y\right)\)

nguyen huu hong son
Xem chi tiết
nguyen van sang
4 tháng 4 2017 lúc 21:40

học trường nào vậy 

nguyen huu hong son
4 tháng 4 2017 lúc 21:44

THCS Lê Lợi, Tam Điệp, Ninh Bình

Phan Văn Hiếu
5 tháng 4 2017 lúc 12:45

bạn viết đề bài cẩn thận hơn đi mk ko hỉu

Ngô Anh Huyền Trân
Xem chi tiết
Mai Thúy Hiền
Xem chi tiết
Nguyễn Tấn Thịnh
Xem chi tiết
Xyz OLM
17 tháng 7 2023 lúc 22:31

2b. ĐKXĐ : \(x\ge-5\) (*)

Ta có \(\sqrt{x+5}=x^2-5\)

\(\Leftrightarrow4x^2-20-4\sqrt{x+5}=0\)

\(\Leftrightarrow4x^2+4x+1-4.\left(x+5\right)-4\sqrt{x+5}-1=0\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(2\sqrt{x+5}+1\right)^2=0\)

\(\Leftrightarrow\left(x+1+\sqrt{x+5}\right)\left(x-\sqrt{x+5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=-\sqrt{x+5}\left(1\right)\\x=\sqrt{x+5}\left(2\right)\end{matrix}\right.\)

Giải (1) có (1) \(\Leftrightarrow\left(x+1\right)^2=x+5\)  ;  ĐK: \(\left(x\le-1\right)\)

\(\Leftrightarrow x^2+x-4=0\Leftrightarrow x=\dfrac{-1\pm\sqrt{17}}{2}\) 

Kết hợp (*) và ĐK được \(x=\dfrac{-1-\sqrt{17}}{2}\) là nghiệm phương trình gốc

Giải (2) có (2) <=> \(x^2-x-5=0\) ; ĐK : \(x\ge0\)

\(\Leftrightarrow x=\dfrac{1\pm\sqrt{21}}{2}\)

Kết hợp (*) và ĐK được \(x=\dfrac{1+\sqrt{21}}{2}\) là nghiệm phương trình gốc

Tập nghiệm \(S=\left\{\dfrac{-1-\sqrt{17}}{2};\dfrac{1+\sqrt{21}}{2}\right\}\)

Xyz OLM
17 tháng 7 2023 lúc 22:39

2c. ĐKXĐ \(x\ge1\) (*)

Đặt \(\sqrt{x-1}=a;\sqrt[3]{2-x}=b\left(a\ge0\right)\) (1) 

Ta có \(\sqrt{x-1}-\sqrt[3]{2-x}=5\Leftrightarrow a-b=5\)

Từ (1) có \(a^2+b^3=1\) (2)

Thế a = b + 5 vào (2) ta được 

\(b^3+\left(b+5\right)^2=1\Leftrightarrow b^3+b^2+10b+24=0\)

\(\Leftrightarrow b^3+8+b^2+10b+16=0\)

\(\Leftrightarrow\left(b+2\right).\left(b^2-b+12\right)=0\)

\(\Leftrightarrow b=-2\) (Vì \(b^2-b+12=\left(b-\dfrac{1}{2}\right)^2+\dfrac{47}{4}>0\forall b\)

Với b = -2 \(\Leftrightarrow\sqrt[3]{2-x}=-2\Leftrightarrow x=10\) (tm) 

Tập nghiệm \(S=\left\{10\right\}\)

Anh Thu
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 7 2023 lúc 15:00

a: \(=\dfrac{6}{3}\cdot x\cdot\dfrac{y^2}{y}=2xy\)

b: \(=\dfrac{62}{2}\cdot\dfrac{x^4}{x^3}\cdot\dfrac{y^3}{y^2}=31xy\)

c: \(=\dfrac{-18}{6}\cdot\dfrac{x^4}{x^2}\cdot\dfrac{y^3}{y}=-3x^2y^2\)

d: \(=\dfrac{27}{9}\cdot\dfrac{x^5}{x^3}\cdot\dfrac{y^6}{y^3}=3x^2y^3\)

e: \(=\dfrac{18}{12}\cdot\dfrac{x^3}{x}\cdot\dfrac{y^4}{y^3}=\dfrac{3}{2}x^2y\)