Cho phân số \(A=\dfrac{6}{n-3}\) với n là số tự nhiên. Phân số A bằng bao nhiêu nếu \(n=14;n=5;n=3\)
Cho phân số A = 6 n - 3 với n là số tự nhiên. Phân số A bằng bao nhiêu nếu n = 14; n = 5; n = 3.
Cho A = \(\dfrac{12n}{3n+3}\)
a) A là 1 phân số
b) A là số nguyên
c) Với giá trị nào của số tự nhiên n thì A có giá trị nhỏ nhất và giá trị nhỏ nhất đó bằng bao nhiêu
a: Để A là phân số thì 3n+3<>0
=>n<>-1
b: \(A=\dfrac{12n}{3\left(n+1\right)}=\dfrac{4n}{n+1}\)
Để A là số nguyên thì 4n+4-4 chia hết cho n+1
=>\(n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-2;1;-3;3;-5\right\}\)
Cho phân số A = \(\dfrac{n^2+4}{n+5}\)
Hỏi có bao nhiêu số tự nhiên thỏa mãn 1\(\le\)n\(\le\)2020 sao cho A là phân số chưa tối giản?
Gọi \(d=ƯC\left(n^2+4;n+5\right)\)
\(\Rightarrow n\left(n+5\right)-\left(n^2+4\right)⋮d\)
\(\Rightarrow5n-4⋮d\)
\(\Rightarrow5\left(n+5\right)-29⋮d\)
\(\Rightarrow29⋮d\)
\(\Rightarrow d=\left\{1;29\right\}\)
Phân số chưa tối giản \(\Leftrightarrow d\ne1\Rightarrow d=29\)
\(\Rightarrow n+5=29k\Rightarrow n=29k-5\)
\(1\le29k-5\le2020\Rightarrow\dfrac{6}{29}\le k\le\dfrac{2025}{29}\)
\(\Leftrightarrow1\le k\le69\Rightarrow\) có 69 số tự nhiên thỏa mãn
a) Cho phân số A=\(\dfrac{2n-3}{n+7}\)
Hỏi có bao nhiêu số tự nhiên n nhỏ hơn 200 để A chưa tối giản.
b) Tìm số tự nhiên n biết:
\(\dfrac{1}{1}\)+\(\dfrac{1}{1+2}\)+\(\dfrac{1}{1+2+3}\)+\(\dfrac{1}{1+2+3+4}\)+....+\(\dfrac{1}{1+2+3+4+...+n}\)=\(\dfrac{200}{101}\)
Giúp với ạ!!!
b: =>\(\dfrac{2}{2}+\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{n\left(n+1\right)}=\dfrac{200}{101}\)
=>\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{n\left(n+1\right)}=\dfrac{100}{101}\)
=>1-1/2+1/2-1/3+...+1/n-1/n+1=100/101
=>1-1/(n+1)=100/101
=>1/(n+1)=1/101
=>n+1=101
=>n=100
a) Cho phân số \(\dfrac{13}{42}\). Hãy tìm một số tự nhiên n sao cho khi cộng tử số với n và giữ nguyên mẫu số thì được phân số mới có giá trị bằng \(\dfrac{5}{6}\).
b) Tính nhanh
\(\dfrac{1}{2}+\dfrac{2}{4}+\dfrac{3}{6}+\dfrac{4}{8}+\dfrac{5}{10}+\dfrac{6}{12}+\dfrac{7}{14}+\dfrac{8}{16}+\dfrac{9}{18}+\dfrac{10}{20}\)
a) cho phân số 5/7 hãy tìm một phân số n sao cho nếu đem tử số trừ đi số tự nhiên n và đem mẫu số cộng với n thì được một phân số mới sau khi rút gọn bằng 1/3
b) cho phân số 3/18 hãy tìm một phân số n sao cho nếu đem tử số cộng số tự nhiên n và đem mẫu số trừ n thì được một phân số mới sau khi rút gọn bằng 3/4
(mọi người làm hộ mình theo cách thêm tử và bớt mẫu hoặc bớt tử và thêm mẫu thì đưa về tổng tỉ)
a) Ta có: \(\dfrac{5-n}{7+n}=\dfrac{1}{3}\)
\(\Leftrightarrow3\left(7+n\right)=5-n\)
\(\Leftrightarrow3n+21-5+n=0\)
\(\Leftrightarrow4n+16=0\)
\(\Leftrightarrow4n=-16\)
hay n=-4
Vậy: n=-4
b) Ta có: \(\dfrac{3+n}{18-n}=\dfrac{3}{4}\)
\(\Leftrightarrow4\left(n+3\right)=3\left(18-n\right)\)
\(\Leftrightarrow4n+12-54+3n=0\)
\(\Leftrightarrow7n=42\)
hay n=6
Vậy: n=6
a) Ta có: 3+n18−n=343+n18−n=34
⇔4(n+3)=3(18−n)⇔4(n+3)=3(18−n)
⇔4n+12−54+3n=0⇔4n+12−54+3n=0
⇔7n=42⇔7n=42
hay n=6
Vậy: n=6
A= \(\dfrac{12n}{3n+3}\)
Tìm giá trị của n đề:
a) A là một phân số
b) A là một số nguyên
c) Với giá trị nào của số tự nhiên n thì A có giá trị nhỏ nhất và giá trị nhỏ nhất đó bằng bao nhiêu?
Giúp mình với mình đang cần gấp!!!
a: A là phân số khi 3n+3<>0
=>n<>-1
b: \(A=\dfrac{12}{3\left(n+1\right)}=\dfrac{4}{n+1}\)
Để A nguyên thì \(n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(n\in\left\{0;-2;1;-3;3;-5\right\}\)
a, Chứng minh rằng với mọi số tự nhiên n thì \(\dfrac{n+1}{2n+3}\) là phân số tối giản
b, Chứng minh rằng với mọi số tự nhiên a, b thì \(\dfrac{7a+5b}{9a+4b}\) là phân số tối giản
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
a) cho phân số A= \(\dfrac{2n-3}{n+7}\).
Hỏi có bao nhiêu sô tự nhiên n nhỏ hơn 200 để A chưa tối giản
miik cần gấp lắm mai trường mình thi rồi mong mọi người giải hộ ;-;