Tìm tất cả các số nguyên dương x,y,z sao cho 2x + 3y + 5z = 136
a) Tìm tất cả các số nguyên tố p và các số nguyên dương x,y biết : p -1=2x(x+2) và p2-1 =2y(y+2)
b) Tìm tất cả các số nguyên dương n sao cho tồn tại x,y,z là các số nguyên dương thỏa mãn x3+y3 +z3 =n.x2y2z2
Các bạn giải cụ thể ra giúp mik, ai nhanh mik tick cho
Tìm tất cả các số nguyên dương x,y,z sao cho \(2^x+3^y+5^z=136\)
Tìm x, y, z nguyên sao cho 2x.3y = 1 + 5z
Lời giải:
TH1: Trong 3 số $x,y,z$ tồn tại $1$ số âm còn 2 số còn lại không âm thì vô lý vì sẽ có 1 vế không nguyên.
TH2: Trong 3 số $x,y,z$ tồn tại $2$ số âm và 1 số không âm.
Hiển nhiên 2 số âm không thể là $x,y$ vì $2^x.3^y=1+5^z>1$
- Nếu $x,z$ cùng âm. Đặt $-x=a; -z=b$ thì $a,b$ nguyên dương.
PT $\Leftrightarrow 3^y.5^b=2^a(5^b+1)$ (vô lý vì 1 vế chia hết cho 5 còn 1 vế thì không)
- Nếu $y,z$ cùng âm thì tương tự vậy (vô lý)
TH3: $x,y,z$ đều âm. Đặt $-x=m; -y=n; -z=p$ với $m,n,p$ nguyên dương.
PT $5^p=2^m.3^n(5^p+1)$ (vô lý)
TH4: $x,y,z$ đều không âm.
$2^x.3^y=1+5^z\equiv 2\pmod 4$
$\Rightarrow x=1$
PT trở thành: $2.3^y=1+5^z$
Nếu $y=0$ thì $z=0$. Ta có bộ $(1,0,0)$
Nếu $y>0$ thì $1+5^z\equiv 1+(-1)^z\equiv 0\pmod 3$
$\Rightarrow z$ lẻ
$z=1$ thì $y=1$. Ta có bộ $(1,1,1)$
$z>1$ thì hiển nhiên $y>1$
$2.3^y=5^z+1=6(5^{z-1}+....+5^0)$
$\Rightarrow 3^{y-1}=5^{z-1}+...+5^0\equiv (-1)^{z-1}+...+(-1)^0\equiv 1\pmod 3$ (vô lý vì $y-1>0$)
Vậy.........
Tìm tất cả các số nguyên dương x; y; z sao cho xyz = 9 + x + y + z
làm đc thì giỏi. Ko làm đc cũng chả sao cả. Biết làm rồi
giải ra cho mk tham khảo đi được ko?????? mk ko bít
5447564
a. tìm tất cả các số nguyên dương n sao cho 3n +63 là bình phương của một số nguyên dương .
b. tìm các số nguyên x,y thõa mãn x2 + 3y2 = ( 3y+1) x
tìm tất cả các số nguyên dương x;y sao cho các số: (x^2) + 3y và y^2 +3x đều là các ssoos chính phương
tìm tất cả các số nguyên dương x,y sao cho x2+3y và y2+3x là các số chính phương
TRẢ LỜI HỘ MK VS MK CÂN GẤP -_-
Tìm tất cả các số nguyên dương n sao cho tồn tại x,y,z là số nguyên dương : x^3+y^3+z^3=n\(x^2y^2z^2\)
Tìm tất cả các số nguyên dương n sao cho tồn tại các số nguyên dương x,y,z thỏa mãn \(x^3+y^3+z^3=nx^2y^2z^2\)
Tìm các số x, y , z biết: 2x = 3y –2x = 5z và x – y + z = 99
\(2x=3y-2x\Leftrightarrow4x=3y\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\\ 3y-2x=5z\Leftrightarrow4x-2x=5z\Leftrightarrow2x=5z\Leftrightarrow\dfrac{x}{5}=\dfrac{z}{2}\\ \Leftrightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{6}=\dfrac{x-y+z}{15-20+6}=\dfrac{99}{1}=99\\ \Leftrightarrow\left\{{}\begin{matrix}x=1485\\y=1980\\z=594\end{matrix}\right.\)