(2sinx-1)(2cos2x+2sinx+1)=3-4cos2x
(2sinx-1)(2cos2x+2sinx+3)=4sin2x-1
Giải các phương trình sau:
1. tan2x+3= (1+√2 sin x)(tan x+ √2 cos x)
2. (1- cos x. cos2x )/ sin2x - 1/ cos x= 4 sin2x - sin x-1
3. sin3x + 2 cos3x+ cos2x - 2sin2x - 2sinx-1=0
Giải pt sau :
1/ (2sinx-1)(2cos2x+2sinx+1)=3-4cos2 x
2/ \(\sqrt{3}cot\left(\frac{\pi}{4}-x\right)+1=0\)
3/ (cos\(\frac{x}{4}-3sinx\)) sinx + (\(\left(1+sin\frac{x}{4}-3cosx\right)cosx=0\)
4/ \(sin2x-cos2x+3sinx-cosx-1=0\)
1.
\(\left(2sinx-1\right)\left(2cos2x+2sinx+1\right)=3-4\left(1-sin^2x\right)\)
\(\Leftrightarrow\left(2sinx-1\right)\left(2cos2x+2sinx+1\right)=4sin^2x-1\)
\(\Leftrightarrow\left(2sinx-1\right)\left(2cos2x+2sinx+1\right)-\left(2sinx-1\right)\left(2sinx+1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(2cos2x+2sinx+1-2sinx-1\right)=0\)
\(\Leftrightarrow2cos2x\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sinx=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
2.
ĐKXĐ: ...
\(\Leftrightarrow cot\left(\frac{\pi}{4}-x\right)=-\frac{1}{\sqrt{3}}\)
\(\Leftrightarrow\frac{\pi}{4}-x=-\frac{\pi}{3}+k\pi\)
\(\Leftrightarrow x=\frac{7\pi}{12}+k\pi\)
3.
\(\Leftrightarrow cos\frac{x}{4}sinx+sin\frac{x}{4}.cosx-3\left(sin^2x+cos^2x\right)+cosx=0\)
\(\Leftrightarrow sin\left(x+\frac{x}{4}\right)=-cosx\)
\(\Leftrightarrow sin\frac{5x}{4}=sin\left(x-\frac{\pi}{2}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{5x}{4}=x-\frac{\pi}{2}+k2\pi\\\frac{5x}{4}=\frac{3\pi}{2}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
4.
\(\Leftrightarrow2sinx.cosx-\left(1-2sin^2x\right)+3sinx-cosx-1=0\)
\(\Leftrightarrow cosx\left(2sinx-1\right)+2sin^2x+3sinx-2=0\)
\(\Leftrightarrow cosx\left(2sinx-1\right)+\left(2sinx-1\right)\left(sinx+2\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(sinx+cosx+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2sinx-1=0\\sinx+cosx=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sin\left(x+\frac{\pi}{4}\right)=-\sqrt{2}< -1\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
TÌM GIÁ TRỊ LỚN NHẤT,NHỎ NHẤT CỦA HÀM SỐ Y
a} y= -sinx(x+2π/3)+7
b} y= sin2x.cos2x - 1
c} y= cosx + cos(x+π/3)
d} y= 2/sin bình 3x +4
e} y= sin bình x + 3/2 cos2x+5
f} y= 3√sinx + 2
g} y=5-2|cosx|
h} y= -2sinx + 4cos4x
j} y= cos bình x + 2cos2x
MỌI NGƯỜI ƠI LÀM GIÚP EM , EM CẦN GẤP TRONG NGÀY MAI :(
b: \(y=\dfrac{1}{2}\sin4x-1\)
\(-1< =\sin4x< =1\)
\(\Leftrightarrow-\dfrac{1}{2}< =\dfrac{1}{2}\cdot\sin4x< =\dfrac{1}{2}\)
\(\Leftrightarrow-\dfrac{3}{2}< =\dfrac{1}{2}\cdot\sin4x-1< =-\dfrac{1}{2}\)
Do đó: \(y_{max}=\dfrac{-1}{2}\) khi \(4x=\dfrac{\Pi}{2}+k\Pi\)
hay \(x=\dfrac{\Pi}{8}+\dfrac{k\Pi}{4}\)
\(y_{min}=\dfrac{-3}{2}\) khi \(4x=-\dfrac{\Pi}{2}+k\Pi\)
hay \(x=-\dfrac{\Pi}{8}+\dfrac{k\Pi}{4}\)
g: \(0>=-2\left|\cos x\right|>=-2\)
\(\Leftrightarrow5>=-2\left|\cos x\right|+5>=3\)
Do đó: \(y_{max}=5\) khi \(\)\(\cos x=0\)
hay \(x=\dfrac{\Pi}{2}+k\Pi\)
\(y_{min}=3\) khi \(\cos x=-1\)
hay \(x=-\Pi+k2\Pi\)
A = (2cosx - 1)(2cos2x + 2sinx +3) +sin2x - 3
Giải PT
a) sin2 x + 2sinx - 3 = 0
b) 2cos x + cos 2x = 0
c) tanx + cotx + 2 = 0
d) sinx + cos2x + 1 = 0
e) tan x + cot 2x = 0
a) TH1: sinx = 1
--> x = pi/2 + k2pi (k nguyên)
TH2: sinx = -3 (loại)
b) 2cosx + cos2x = 0
<=> 2cosx + 2cos^2(x) - 1 = 0
TH1: cosx = (-1 + sqrt(3))/2
TH2: cosx = (-1 - sqrt(3))/2 (loại)
c) ĐKXĐ: x # kpi
Pt <=> tanx + 1/tanx + 2 = 0
--> tanx = -1
--> x = -pi/4 + kpi (k nguyên)
tìm GTLN,GTNN của hàm số
a/ y= sin2x + (\(\sqrt{3}\) +1) cos2x +sin4 x -cos4x -1
b/ (sinx -2cosx)(2sinx+cosx)-1
c/ y= (Sinx-cosx)2+2cos2x+3sinxcosx
giúp em giải chi tiết với ạ
a/ \(y=sin2x+\left(\sqrt{3}+1\right)cos2x+sin^2x-cos^2x-1\)
\(=sin2x+\sqrt{3}cos2x-1=2sin\left(2x+\frac{\pi}{3}\right)-1\)
Do \(-1\le sin\left(2x+\frac{\pi}{3}\right)\le1\Rightarrow-3\le y\le1\)
b/ \(y=2sin^2x-2cos^2x-3sinx.cosx-1\)
\(=-2cos2x-\frac{3}{2}sin2x-1=-\frac{5}{2}\left(\frac{3}{5}sinx+\frac{4}{5}cosx\right)-1\)
\(=-\frac{5}{2}sin\left(x+a\right)-1\Rightarrow-\frac{7}{2}\le y\le\frac{3}{2}\)
c/ \(y=1-sin2x+2cos2x+\frac{3}{2}sin2x=\frac{1}{2}sin2x+2cos2x+1\)
\(=\frac{\sqrt{17}}{2}\left(\frac{1}{\sqrt{17}}sin2x+\frac{4}{\sqrt{17}}cos2x\right)+1=\frac{\sqrt{17}}{2}sin\left(2x+a\right)+1\)
\(\Rightarrow-\frac{\sqrt{17}}{2}+1\le y\le\frac{\sqrt{17}}{2}+1\)
1. Cho sinx = \(\dfrac{2}{3}\) , x ∈ (0,\(\dfrac{\Pi}{2}\))
Tính cosx, tanx , sin (x+\(\dfrac{\Pi}{4}\))
2. Cho cos = \(\dfrac{1}{4}\) . Tính sinx, cos2x
3. Cho tanx = 2 . Tính cosx, sinx
x ∈ (0,\(\dfrac{\Pi}{2}\))
4. Rút gọn a) A = cos2x - 2cos2x + sinx +1
b) B = \(\dfrac{cos3x+cos2x+cosx}{cos2x}\)
1.
\(0< x< \dfrac{\pi}{2}\Rightarrow cosx>0\)
\(\Rightarrow cosx=\sqrt{1-sin^2x}=\dfrac{\sqrt{5}}{3}\)
\(tanx=\dfrac{sinx}{cosx}=\dfrac{2}{\sqrt{5}}\)
\(sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\left(sinx+cosx\right)=\dfrac{\sqrt{10}+2\sqrt{2}}{6}\)
2.
Đề bài thiếu, cos?x
Và x thuộc khoảng nào?
3.
\(x\in\left(0;\dfrac{\pi}{2}\right)\Rightarrow sinx;cosx>0\)
\(\dfrac{1}{cos^2x}=1+tan^2x=5\Rightarrow cos^2x=\dfrac{1}{5}\Rightarrow cosx=\dfrac{\sqrt{5}}{5}\)
\(sinx=cosx.tanx=\dfrac{2\sqrt{5}}{5}\)
4.
\(A=\left(2cos^2x-1\right)-2cos^2x+sinx+1=sinx\)
\(B=\dfrac{cos3x+cosx+cos2x}{cos2x}=\dfrac{2cos2x.cosx+cos2x}{cos2x}=\dfrac{cos2x\left(2cosx+1\right)}{cos2x}=2cosx+1\)