Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Ngọc Khánh Linh
Xem chi tiết
Edogawa Conan
20 tháng 7 2019 lúc 7:40

a) 6x4 - 9x3 = 3x3(2x - 3)

b) 5y10 + 15y6 = 5y6(y4 + 3)

c) x2 - 6xy + 9y2 = x2 - 6xy + (3y)2 = (x - 3y)2

e) x3 - 64 = x3 - 43 = (x - 4)(x2 + 4x + 16)

f) 125x3 + y6 = (5x)3 + (y2)3 = (5x + y2)(25x2 + 5y2 + y4)

g) 0,125(a + 1)3 - 1 = [0,5(a + 1)]3 - 13 = (0,5a + 0,5)3 - 13 = (0,5a + 0,5 - 1)[(0,5a + 0,5)2 + (0,5a + 0,5) + 1) = (0,5a - 0,5)(0,25a^2 + 0,5 a + 0,25 + 0,5a + 0,5 + 1) = (0,5a - 0,5)(0,25a2 + 1,75 + a)

h) 3x2 - 12y2 = 3(x2 - 4y2) = 3[x2 - (2y)2 ] = 3(x - 2y)(x + 2y)

phan thuy nga
Xem chi tiết
phan thuy nga
30 tháng 9 2016 lúc 15:49

sai đề thì sửa dùm mik nhé

phan thuy nga
1 tháng 10 2016 lúc 11:38

giúp mik bài này với

CẦN GẤP

HNK
Xem chi tiết
Nguyễn Hữu Nguyên
Xem chi tiết
Trên con đường thành côn...
29 tháng 7 2021 lúc 10:13

undefined

Nguyễn Lê Phước Thịnh
29 tháng 7 2021 lúc 13:43

a) Ta có: \(x-2y+x^2-4y^2\)

\(=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)\)

\(=\left(x-2y\right)\left(x+2y+1\right)\)

b) Ta có: \(x^2+2xy+y^2-4x^2y^2\)

\(=\left(x+y\right)^2-\left(2xy\right)^2\)

\(=\left(x+y+2xy\right)\left(x+y-2xy\right)\)

c) Ta có: \(x^6-x^4+2x^3+2x^2\)

\(=x^4\left(x-1\right)\left(x+1\right)+2x^2\left(x+1\right)\)

\(=\left(x+1\right)\left[x^4\left(x-1\right)+2x^2\right]\)

\(=x^2\left(x+1\right)\left[x^2\left(x-1\right)+2\right]\)

\(=x^2\left(x+1\right)\cdot\left(x^3-x^2+2\right)\)

d) Ta có: \(x^3+3x^2+3x+1-8y^3\)

\(=\left(x+1\right)^3-\left(2y\right)^3\)

\(=\left(x+1-2y\right)\left[\left(x+1\right)^2+2y\left(x+1\right)+4y^2\right]\)

\(=\left(x-2y+1\right)\left(x^2+2x+1+2xy+2y+4y^2\right)\)

Nguyễn Hữu Nguyên
Xem chi tiết
Nguyễn Huy Tú
6 tháng 8 2021 lúc 10:25

a, \(x-2y+x^2-4y^2=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)=\left(x-2y\right)\left(1+x+2y\right)\)

b, \(x^2-4x^2y^2+y^2+2xy=\left(x+y\right)^2-\left(2xy\right)^2\)

\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)

c, \(x^6-x^4+2x^3+2x^2=x^6+2x^3+1-x^4+2x^2-1\)

\(=\left(x^3+1\right)^2-\left(x^2-1\right)^2=\left(x^3-x^2+2\right)\left(x^3+x^2\right)\)

\(=x^2\left(x+1\right)\left(x^3-x^2+2\right)\)

d, \(x^3+3x^2+3x+1-8y^3=\left(x+1\right)^3-\left(2y\right)^3=\left(x+1-2y\right)\left(x+1+2y\right)\)

Nguyễn Lê Phước Thịnh
6 tháng 8 2021 lúc 11:20

a) Ta có: \(x-2y+x^2-4y^2\)

\(=\left(x-2y\right)+\left(x-2y\right)\left(x+2y\right)\)

\(=\left(x-2y\right)\left(1+x+2y\right)\)

b: Ta có: \(x^2-4x^2y^2+y^2+2xy\)

\(=\left(x+y\right)^2-\left(2xy\right)^2\)

\(=\left(x+y-2xy\right)\left(x+y+2xy\right)\)

Phạm Trang
Xem chi tiết
Lê Hoàng Thùy Linh
Xem chi tiết
Kiều Vũ Linh
20 tháng 10 2023 lúc 8:19

a) Xem lại đề

b) x³ - 4x²y + 4xy² - 9x

= x(x² - 4xy + 4y² - 9)

= x[(x² - 4xy + 4y² - 3²]

= x[(x - 2y)² - 3²]

= x(x - 2y - 3)(x - 2y + 3)

c) x³ - y³ + x - y

= (x³ - y³) + (x - y)

= (x - y)(x² + xy + y²) + (x - y)

= (x - y)(x² + xy + y² + 1)

d) 4x² - 4xy + 2x - y + y²

= (4x² - 4xy + y²) + (2x - y)

= (2x - y)² + (2x - y)

= (2x - y)(2x - y + 1)

e) 9x² - 3x + 2y - 4y²

= (9x² - 4y²) - (3x - 2y)

= (3x - 2y)(3x + 2y) - (3x - 2y)

= (3x - 2y)(3x + 2y - 1)

f) 3x² - 6xy + 3y² - 5x + 5y

= (3x² - 6xy + 3y²) - (5x - 5y)

= 3(x² - 2xy + y²) - 5(x - y)

= 3(x - y)² - 5(x - y)

= (x - y)[(3(x - y) - 5]

= (x - y)(3x - 3y - 5)

thanh dat nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 10 2021 lúc 22:41

b: \(x^2-6x+xy-6y\)

\(=x\left(x-6\right)+y\left(x-6\right)\)

\(=\left(x-6\right)\left(x+y\right)\)

c: \(2x^2+2xy-x-y\)

\(=2x\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(2x-1\right)\)

e: \(x^3-3x^2+3x-1=\left(x-1\right)^3\)

Nguyễn Thị Ngọc Lan
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 6 2021 lúc 20:15

e) Ta có: \(a^3-a^2-a+1\)

\(=a^2\left(a-1\right)-\left(a-1\right)\)

\(=\left(a-1\right)\left(a^2-1\right)\)

\(=\left(a-1\right)^2\cdot\left(a+1\right)\)

f) Ta có: \(x^3-2xy-x^2y+2y^2\)

\(=x^2\left(x-y\right)-2y\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2-2y\right)\)

Trúc Giang
27 tháng 6 2021 lúc 20:15

a) \(\left(a^2+b^2\right)^2-4a^2b^2=\left(a^2+b^2+2ab\right)\left(a^2+b^2-2ab\right)=\left(a+b\right)^2.\left(a-b\right)^2\)

b) \(3x^2-3xy-5x+5y=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)

c) \(-x^3+3x^2-3x+1=\left(1-x\right)^3\)

d) Đề sai ko ???

e) \(a^3-a^2-a+1=a^2\left(a-1\right)-\left(a-1\right)=\left(a-1\right)\left(a^2-1\right)=\left(a-1\right)^2\left(a+1\right)\)

f) \(x^3-2xy-x^2y+2y^2=x^2\left(x-y\right)-2y\left(x-y\right)=\left(x-y\right)\left(x^2-2y\right)\)

Nguyễn Ngọc Lộc
27 tháng 6 2021 lúc 20:17

a, \(=\left(a^2+b^2-2ab\right)\left(a^2+b^2+2ab\right)=\left(\left(a-b\right)\left(a+b\right)\right)^2=\left(a^2-b^2\right)^2\)

\(b,=3x\left(x-y\right)-5\left(x-y\right)=\left(x-y\right)\left(3x-5\right)\)

\(c,=-\left(x^2-3x^2+3x-1\right)=-\left(x-1\right)^3\)

\(d,=2\left(x^2+2xy+y^2-4z^2\right)=2\left(\left(x+y\right)^2-4z^2\right)=2\left(x+y-2z\right)\left(x+y+2z\right)\)

\(e,=a^2\left(a-1\right)-\left(a-1\right)=\left(a-1\right)\left(a^2-1\right)\)

\(f,=x^2\left(x-y\right)-2y\left(x-y\right)=\left(x^2-2y\right)\left(x-y\right)\)