C/m 2^12+1 chia hết cho 17
Cm : 2^12 +1 chia hết cho 17
Theo định lý Fermat nhỏ, \(2^{16}-1⋮17\) (đl Fermat nhỏ phát biểu rằng, cho số nguyên dương \(a\) và số nguyên tố \(p\) mà \(\left(a,p\right)=1\) thì \(a^{p-1}-1⋮p\), chứng minh thì bạn tìm hiểu thêm nhé, mình không chứng minh ở đây vì nó khá dài)
Mà ta lại có \(2^4+1=17⋮17\) \(\Rightarrow2^{12}\left(2^4+1\right)⋮17\) \(\Rightarrow2^{16}+2^{12}⋮17\)
Kết hợp với \(2^{16}-1⋮17\), ta có \(\left(2^{16}+2^{12}\right)-\left(2^{16}-1\right)⋮17\)
\(\Rightarrow2^{12}+1⋮17\)
a, Ta có: 212+1=4096+1=4097 chia hết cho 17Vậy 212+1 chia hết cho 17
Cho B= 201412-1712. CM B chia hết cho 5
Bài 1 : cm 32010 + 52010 chia hết cho 13
bài 2: cm 241917+ 141917 chia hết cho 19
bài 3: cm vs n thuộc N*, ta có :
a, 62n+ 19n - 2n+1 chia hết cho 17
b, 62n + 1 + 5n+2 chia hết cho 31
c, 212n+1+ 172n+1 + 15 chia hết cho 19
Bài 1:
ta có 3^3 = 27 chia 13 dư 1
=> (3^3)^670 = 3^ 2010 chia 13 dư 1 (1)
5^2 = 25 chia 13 dư (-1)
=> (5^2)^1005 chia 13 dư (-1)^ 1005 = (-1) (2)
Từ (1); (2)
=> 3^2010+5^2010 chia 13 dư 1 + (-1) = 0
hay 3^2010+5^2010 chia hết cho 13.
bài 1:
32010=(33)670≡1670(mod13)" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">
52010=(52)1005≡(−1)1005(mod13)" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-table; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">
32010+52010" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml"> chia hết cho 13
32010+52010=(33)670+(52)1005=27670+251005=(26+1)670+(26−1)1005=26A+1670−11005=26A⋮13" role="presentation" style="border:0px; direction:ltr; display:table-cell !important; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:44.919em; overflow-wrap:normal; padding:1px 0px; position:relative; text-align:center; white-space:nowrap; width:10000em; word-spacing:normal" class="MathJax_CHTML mjx-chtml mjx-full-width">
1.Cho 2x+3y chia hết cho 11 thì 10x+4y chia hết cho 11
2. Cho 3x+2y chia hết cho 12. Chứng minh rằng 10x+y chia hết cho 17
Chứng minh rằng: (12^1980-2^1000) chia hết cho 10. A= 1+4+4^2+...+4^99 chia hết cho 17
\(A=1+4+4^2+...+4^{99}\)
\(A=\left(1+4+4^2+4^3\right)+\left(4^4+4^5+4^6+4^7\right)+...+\left(4^{96}+4^{97}+4^{98}+4^{99}\right)\)
\(A=85+4^7\left(1+4+4^2+4^3\right)...+4^{96}\left(1+4+4^2+4^3\right)\)
\(A=85+4^7.85+...+4^{96}.85\)
\(A=85.\left(1+4^7+...+4^{96}\right)\)
Vì 85 chia hết cho 17 nên A chia hết cho 17
Sửa đề: \(11\cdot5^{2n}+2^{3n+2}+2^{3n+1}\)
Ta có: \(11\cdot5^{2n}+2^{3n+2}+2^{3n+1}\)
\(=11\cdot25^n+8^n\cdot4+8^n\cdot2\)
\(=11\cdot25^n+6\cdot8^n\)
Vì \(25\equiv8\)(mod 17)
nên \(11\cdot25^n+6\cdot8^n\equiv11\cdot8^n+6\cdot8^n\equiv17\cdot8^n\equiv0\)(mod 17)
hay \(11\cdot5^{2n}+2^{3n+2}+2^{3n+1}⋮17\)(đpcm)
CMR: 212 + 1 chia hết cho 17
\(2^{12}+1=\left(2^4+1\right)\left(2^8-2^4+1\right)=17\cdot\left(2^8-2^4+1\right)⋮17\)
Cm
1^2019+2^2019+...+16^2019 chia hết cho 17
Cm
1^2019+2^2019+...+16^2019 chia hết cho 17