Cho tam giác ABC cân tại A, đường cao Ch cắt tia phân giác của góc A tại D. Chứng minh rằng BD vuông góc với AC
Cho tam giác ABC cân tại A, đường cao CH cắt tia phân giác của góc A tại D. Chứng minh rằng BD vuông góc với AC.
Vì ΔABC cân tại A nên đường phân giác của góc ở đỉnh A cũng là đường cao từ A.
Suy ra: AD ⊥ BC
Ta có: CH ⊥ AB (gt)
Tam giác ABC có hai đường cao AD và CH cắt nhau tại D nên D là trực tâm của ∆ABC
Suy ra BD là đường cao xuất phát từ đỉnh B đến cạnh AC.
Vậy BD ⊥ AC.
Cho tam giác ABC cân tại A, đường cao CH cắt tia phân giác của góc A tại D. Chứng minh rằng BD vuông góc với AC ?
Vì ΔABC cân tại A nên đường phân giác của góc ở đỉnh A cũng là đường cao từ A.
Suy ra: AD ⊥ BC
Ta có: CH ⊥ AB (gt)
Tam giác ABC có hai đường cao AD và CH cắt nhau tại D nên D là trực tâm của ∆ABC
Suy ra BD là đường cao xuất phát từ đỉnh B đến cạnh AC.
Vậy BD ⊥ AC.
a)cho tam giác ABC có các đường cao BD và CE bằng nhau . Chứng minh rằng tam giác đó là một tam giác cân
b)Cho tam giác ABC cân tại A,đường cao CH cắt tia phân giác của góc A tại D. Chứng minh rằng BD vuông góc với AC
Vì ΔABC cân tại A nên đường phân giác của góc ở đỉnh A cũng là đường cao từ A.
Suy ra: AD ⊥ BC
Ta có: CH ⊥ AB (gt)
Tam giác ABC có hai đường cao AD và CH cắt nhau tại D nên D là trực tâm của ∆ABC
Suy ra BD là đường cao xuất phát từ đỉnh B đến cạnh AC.
Vậy BD ⊥ AC.
Bài 1:
a) Cho tam giác ABC có các đường cao BD và CE bằng nhau. Chứng minh rằng tam giác đó là tam giác cân.
b) Cho tam giácABC cân tại A, đường cao CH cắt tia phân giác của góc A tại D. Chứng minh rằng BD vuông góc với AC.
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
BD=CE
góc ABD=góc ACE
=>ΔADB=ΔAEC
=>AB=AC
=>ΔABC cân tại A
b: ΔABC cân tại A
mà AD là đường phân giác
nên AD vuông góc BC
Xét ΔABC có
AD,CH là đường cao
AD cắt CH tại D
=>D là trực tâm
=>BD vuông góc AC
Cho tam giác ABC cân tại A, đường cao CH cắt tia phân giác của góc A tại D. Chứng minh BD vuông góc với AC
Tam giác ABC cân tại A, AD là phân giác => AD là đường cao
Ta có Đường cao CH cắt đường cao AD tại D => D là trực tâm của tam giác => BD là đường cao => BD vuông góc với AC.
Hình vẽ:
\(\Delta ABC\) cân tại A, đường phân giác của góc ở đỉnh cũng là đường cao.
Do đó:
\(AD\perp BC\)
\(CH\perp AB\left(gt\right)\)
Trong \(\Delta ABC\) có hai đường cao AD và CH cắt nhau tại D nên D là trực tâm của \(\Delta ABC\), do đó BD là đường cao xuất phát từ đỉnh B đến cạnh đối diện AC.
Vậy \(BD\perp AC\)
Cho tam giác ABC cân tại A, có đường cao CH cắt tia phân giác góc A tại D. chứng minh BD vuông góc AC.
∞ Xét ▲ABK và ▲ACH có :
Góc A chung
Góc E = Góc D = 1v
AB = AC ( ▲ABC cân tại A )
Nên ▲ABK = ▲ACH (chgn) → AH = AK
∞ Xét ▲ADH và ▲ADK có :
AD chung
Góc H = Góc K = 1v
AH = AK (cmt)
Nên ▲ADH = ▲ADK (chcgv) → \(A_1=A_2\) kết hợp với AD nằm giữa AB và AC → AD phân giác góc A mà trong tam giác cân phân giác cũng là đường cao nên AD là đường cao hay BD _|_ AC.
CHÚC BẠN HỌC TỐT !!!
a) cho tam giác ABC có cấc đường cao BD và CE bằng nhau .Chứng minh rằng tam giác đó là tam giác cân
b) cho tam giác ABC cân tại a,đường cao CHcắt tia phân giác của góc A tại D.chứng minh rằng BD vuông góc với AC
Cho tam giác ABC cân tại A, đường cao CH cắt tia phân giác của gocA tại D. Chứng minh rằng BD vuông góc với C.
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC cân tại A với góc A = 100 độ. Tia phân giác của góc B cắt AC tại D. Qua A kẻ đường thẳng vuông góc với BD và cắt BC tại I.
a.Chứng minh BA=BI
b.Trên tia đối của DB lấy K sao cho DA=DK. Chứng minh tam giác AIK đều
c.Tính các góc của tam giác BCK
Cho tam giác ABC vuông tại A (AB < AC) kẻ đường cao AH, đường trung tuyến AM. Đường thẳng vuông góc với AM tại A cắt đường thẳng BC tại D. Chứng minh rằng: a) AB là tia phân giác của góc DAH. b) BH×CD=BD×CH
a: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MB=MC
Ta có: MA=MB
=>ΔMAB cân tại M
=>\(\widehat{MAB}=\widehat{MBA}\)
Ta có: \(\widehat{DAB}+\widehat{MAB}=\widehat{DAM}=90^0\)
\(\widehat{HAB}+\widehat{HBA}=90^0\)(ΔHAB vuông tại H)
mà \(\widehat{MAB}=\widehat{HBA}\)(cmt)
nên \(\widehat{DAB}=\widehat{HAB}\)
=>AB là phân giác của góc DAH
BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E
a) chứng minh AB=EB
b) chứng minh tam giác BED vuông
c) DE cắt AB tại F, chứng minh AE//FC
BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I
a) chứng minh tam giác IBC cân
b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy
BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm
a)so sánh góc A và góc C
b)chứng minh rằng tam giác ABH = tam giác ACH
c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG
d)tính độ dài AG
e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG
BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F
a)chứng minh tam giác ABE = tam giác DBE
b) chứng minh tam giác BCF cân
c) chứng minh 3 điểm F.D,E thẳng hàng
d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM
BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I
a)chứng minh rằng tam giác BDC = tam giác CEB
b)so sánh góc IBE và góc ICD
c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H
BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm
a)tính BC
b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB
c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE
d) chứng minh BE vuông góc FC
BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E
a) chứng minh AB=EB
b) chứng minh tam giác BED vuông
c) DE cắt AB tại F, chứng minh AE//FC
BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I
a) chứng minh tam giác IBC cân
b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy
BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm
a)so sánh góc A và góc C
b)chứng minh rằng tam giác ABH = tam giác ACH
c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG
d)tính độ dài AG
e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG
BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F
a)chứng minh tam giác ABE = tam giác DBE
b) chứng minh tam giác BCF cân
c) chứng minh 3 điểm F.D,E thẳng hàng
d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM
BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I
a)chứng minh rằng tam giác BDC = tam giác CEB
b)so sánh góc IBE và góc ICD
c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H
BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm
a)tính BC
b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB
c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE
d) chứng minh BE vuông góc FC
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).