Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lính thủy lục túi
Xem chi tiết
lính thủy lục túi
21 tháng 12 2021 lúc 18:38

chỉ cần làm câu B thôi nha câu A mình làm xong r

Nguyễn Lê Phước Thịnh
21 tháng 12 2021 lúc 20:10

2: AM=5cm

Chien Thang
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 10 2021 lúc 20:42

b: Xét tứ giác AEHF có 

\(\widehat{AEH}=\widehat{AFH}=\widehat{EAF}=90^0\)

Do đó: AEHF là hình chữ nhật

Suy ra: AH=EF

lê minh
Xem chi tiết
bin01985
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 1 2023 lúc 8:50

a: Xét tứ giác AEHF có

góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

=>AH=EF

b: góc IFE=90 độ

=>góc IFH+góc EFH=90 độ

=>góc IFH+góc AHF=90 độ

=>góc IFH=góc IHF

=>IH=IF và góc IFC=góc ICF

=>IH=IC

=>I là trung điểm của HC

Xét ΔHAC có HO/HA=HI/HC

nên OI//AC và OI=AC/2

=>OI//AK và OI=AK

=>AOIK là hình bình hành

Vyyyyyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 11 2023 lúc 22:09

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

Xét ΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}=90^0-37^0=53^0\)

b: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC=MB=BC/2

Xét ΔMAC có MA=MC

nên ΔMAC cân tại M

=>\(\widehat{MAC}=\widehat{MCA}=\widehat{ACB}\left(1\right)\)

\(\widehat{ACB}+\widehat{ABC}=90^0\)(ΔABC vuông tại A)

\(\widehat{HAB}+\widehat{ABH}=90^0\)(ΔABH vuông tại H)

Do đó: \(\widehat{ACB}=\widehat{HAB}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{MAC}=\widehat{HAB}\)

c: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>\(\widehat{AFE}=\widehat{AHE}\)

mà \(\widehat{AHE}=\widehat{ABC}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{AFE}=\widehat{ABC}\)

\(\widehat{AFE}+\widehat{MAC}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

=>FE vuông góc AM tại K

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)

Xét ΔHAB vuông tại H có HE là đường cao

nên \(HA^2=AE\cdot AB\)

=>\(AE\cdot6=4,8^2\)

=>\(AE=3,84\left(cm\right)\)

Xét ΔHAC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\)

=>\(AF=\dfrac{4.8^2}{8}=2,88\left(cm\right)\)

Xét ΔAEF vuông tại A có AK là đường cao

nên \(\dfrac{1}{AK^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\)

=>\(\dfrac{1}{AK^2}=\dfrac{1}{2,88^2}+\dfrac{1}{3.84^2}\)

=>AK=2,304(cm)

Quách Đắc Lộc
Xem chi tiết
Lê Anh Phương Huyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 11 2021 lúc 21:17

a: BC=10cm

AH=4,8cm

Trần Anh tuấn
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 7 2023 lúc 10:49

a: BC=căn 6^2+8^2=10cm

BH=AB^2/BC=3,6cm

CH=10-3,6=6,4cm

sin ABC=AC/BC=4/5

=>góc ABC=53 độ

b: ΔAHB vuông tại H có HE là đường cao

nên AE*AB=AH^2

ΔAHC vuông tại H có HF là đường cao

nên AF*AC=AH^2

=>AE*AB=AF*AC

=>AE/AC=AF/AB

=>ΔAEF đồng dạng với ΔACB

c: góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hình chữ nhật

góc KAC+góc AFE

=góc AHE+góc KCA

=góc ABC+góc ACB=90 độ

=>AK vuông góc EF

Phạm Đỗ Thanh Thư
Xem chi tiết
dinhkhachoang
16 tháng 2 2017 lúc 19:15

XÉT TAM GIÁC AHB VÀ TAM GIÁC AHC CÓ

AB=AC(GT)

AH CHUNG

GÓC AHB = GÓC AHC

=>TAM GIÁC AHB=TAM GIÁC AHC (CGC)

C,XÉT TAM GIÁC AHE VÀ TAM GIÁC AFH CÓ

AH CHUNG

GÓC AEH=GÓC AFH =90*

A1=A2

=>TAM GIÁC AHE=TAM GIÁC AFH (GCG)

=>HE=HF (CẠNH TƯƠNG ỨNG) A B C H

Cửu Vĩ Hồ
Xem chi tiết
Lê Thị Nhung
22 tháng 2 2020 lúc 12:50

a) Vì tam giác ABC cân tại A suy ra AC=AC (T/chất), góc B= góc C

Xét tam giác ABH và tam giác ACH

Có: AB=AC (Vì tam giác ABC cân tại A)

     AH chung

HB=HB (GT)

suy ra tam giác ABH = tam giác ACH (c.c.c) (1)

b) Vì HB=HC=BC/2=6/2=3 (cm)

Từ (1) suy ra góc AHB=góc AHC (2 góc tương ứng)

mà góc AHB=góc AHC=180 độ 

suy ra góc AHB=góc AHC=90 độ

Xét tam giác AHB vuông tại H suy ra AB^2=AH^2+BH^2 (Định lý pytago)

suy ra 5^2=AH^2+3^2

25=AH^2+9

suy ra AH^2=16 suy ra AH=4(cm) vì AH >0

c) Xét tam giác vuông AHE và tam giác vuông AHF

có AH chung

góc HAE=góc HAF ( theo câu a)

suy ra tam giác AHE =tam giác  AHF (cạnh huyền-góc nhọn)

suy ra AE=AF suy ra A thuộc đường TT của EF  (3)

HE=HF suy ra H thuộc đường TT của EF   (4)

 từ (3) và (4) suy ra AH là đường TT của EF

Khách vãng lai đã xóa