Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Nguyễn Bảo Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2021 lúc 19:43

\(x+x\cdot3:\dfrac{2}{9}+x:\dfrac{2}{7}=252\)

\(\Leftrightarrow x+x\cdot3\cdot\dfrac{9}{2}+x\cdot\dfrac{7}{2}=252\)

\(\Leftrightarrow x\cdot18=252\)

hay x=14

anh quynh
Xem chi tiết

2 (x-1) - 5 (x+2) = -10

2x-2 - 5x+10 = -10

2x-5x-2+10=-10

2x-5x=-10-10+2

-3x=-18

x=6

 

Trang Nguyễn
Xem chi tiết
Trần Thị Thu Trang
Xem chi tiết
Duy Hoàng
11 tháng 5 2023 lúc 19:11

Ko cần biet vi ko biet ang ang

 

\(\dfrac{1}{2022}\) \(\times\) \(\dfrac{2}{5}\) + \(\dfrac{1}{2022}\) \(\times\) \(\dfrac{7}{5}\) - \(\dfrac{1}{2022}\) \(\times\) \(\dfrac{8}{10}\)

\(\dfrac{1}{2022}\) \(\times\) ( \(\dfrac{2}{5}\) + \(\dfrac{7}{5}\) - \(\dfrac{8}{10}\))

\(\dfrac{1}{2022}\) \(\times\) ( \(\dfrac{9}{5}\) - \(\dfrac{4}{5}\))

\(\dfrac{1}{2022}\) \(\times\) \(\dfrac{5}{5}\)

=  \(\dfrac{1}{2022}\times1\)

\(\dfrac{1}{2022}\)

Trang Nguyễn
Xem chi tiết
👁💧👄💧👁
20 tháng 7 2021 lúc 17:21

a) \(A=x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=3\)\(min_A=1\)

b) \(B=3x^2+x-2=3\left(x^2+\dfrac{1}{3}x-\dfrac{2}{3}\right)=3\left(x^2+\dfrac{1}{3}x+\dfrac{1}{36}-\dfrac{25}{36}\right)=3\left(x+\dfrac{1}{6}\right)^2-\dfrac{25}{12}\ge\dfrac{-25}{12}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{6}\)\(min_B=\dfrac{-25}{12}\)

c) \(C=\dfrac{4}{x^2}-\dfrac{3}{x}-1=\left(\dfrac{4}{x^2}-\dfrac{3}{x}+\dfrac{9}{16}\right)-\dfrac{25}{16}=\left(\dfrac{2}{x}+\dfrac{2}{3}\right)^2-\dfrac{25}{16}\ge\dfrac{-25}{16}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-3\)\(min_C=\dfrac{-25}{16}\)

d) \(D=x^2+y^2-x+3y+7=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+3y+\dfrac{9}{4}\right)+\dfrac{9}{2}=\left(x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{3}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-3}{2}\end{matrix}\right.\)\(min_D=\dfrac{9}{2}\)

Trang Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 7 2021 lúc 11:49

Đặt \(A=x+\dfrac{1}{x}\)

\(A=\left(\dfrac{x}{25}+\dfrac{1}{x}\right)+\dfrac{24}{25}x\ge2\sqrt{\dfrac{x}{25x}}+\dfrac{24}{25}.5=\dfrac{26}{5}\)

\(A_{min}=\dfrac{26}{5}\) khi \(x=5\)

Yết Thiên
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 1 2022 lúc 23:47

\(a,P=\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\\ P=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\)

\(b,P=\dfrac{1}{2}\Leftrightarrow4-10\sqrt{x}=\sqrt{x}+3\Leftrightarrow\sqrt{x}=\dfrac{7}{11}\Leftrightarrow x=\dfrac{49}{121}\left(tm\right)\)

\(c,P-\dfrac{2}{3}=\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}-\dfrac{2}{3}=\dfrac{6-15\sqrt{x}-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}=\dfrac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}\)

Ta có \(3\left(\sqrt{x}+3\right)>0;-17\sqrt{x}\le0,\forall x\)

\(\Rightarrow P-\dfrac{2}{3}\le0\Leftrightarrow P\le\dfrac{2}{3}\left(đpcm\right)\)

Chi Trương
Xem chi tiết
Wendy
15 tháng 12 2018 lúc 19:12

x ở đâu thế

Delwynne
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 12 2021 lúc 10:47

\(\Rightarrow\dfrac{2}{3}:x=\dfrac{5}{3}\Rightarrow x=\dfrac{2}{3}:\dfrac{5}{3}=\dfrac{2}{5}\)

trần hoàng dũng
22 tháng 12 2021 lúc 10:50