Tìm GTNN của: A= (x-1)(x-3)(x^2 -4x+50)
Tìm GTNN
A=x^2+14x+50
B=x^2+4x+6
C=x^2-x+1
D=x^2+3x+3
E=2x^2+4x+3
A=(x+7)^2+1>=1
Dấu = xảy ra khi x=-7
B=(x+2)^2+2>=2
Dấu = xảy ra khi x=-2
C=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
D=(x+3/2)^2+3/4>=3/4
Dấu = xảy ra khi x=-3/2
E=2(x+1)^2+1>=1
Dấu = xảy ra khi x=-1
A = x2 + 14x + 50 = (x2 + 14x + 49) + 1 = (x + 7)2 + 1
Ta có: (x + 7)2 \(\ge\)0 \(\forall\)x
=> (x + 7)2 + 1 \(\ge\)1 \(\forall\)x
Dấu "=" xảy ra <=> x + 7 = 0 <=> x = -7
Vậy MinA = 1 <=> x = -7
B = x2 + 4x + 6 = (x2 + 4x + 4) + 2 = (x + 2)2 + 2
Ta luôn có : (x + 2)2 \(\ge\)0 \(\forall\)x
=> (x + 2)2 + 2 \(\ge\)2 \(\forall\)x
Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2
Vậy MinB = 2 <=> x = -2
C = x2 - x + 1 = (x2 - x + 1/4) + 3/4 = (x - 1/2)2 + 3/4
Ta luôn có: (x - 1/2)2 \(\ge\)0 \(\forall\)x
=> (x - 1/2)2 + 3/4 \(\ge\)3/4 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2
Vậy MinC = 3/4 <=> x = 1/2
A = x2 + 14x + 50 = (x2 + 14x + 49) + 1 = (x + 7)2 + 1
Ta có: (x + 7)2 \ge≥0 \forall∀x
=> (x + 7)2 + 1 \ge≥1 \forall∀x
Dấu "=" xảy ra <=> x + 7 = 0 <=> x = -7
Vậy Min A = 1 <=> x = -7
B = x2 + 4x + 6 = (x2 + 4x + 4) + 2 = (x + 2)2 + 2
Ta luôn có : (x + 2)2 \ge≥0 \forall∀x
=> (x + 2)2 + 2 \ge≥2 \forall∀x
Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2
Vậy Min B = 2 <=> x = -2
C = x2 - x + 1 = (x2 - x + 1/4) + 3/4 = (x - 1/2)2 + 3/4
Ta luôn có: (x - 1/2)2 \ge≥0 \forall∀x
=> (x - 1/2)2 + 3/4 \ge≥3/4 \forall∀x
Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2
Vậy Min C = 3/4 <=> x = 1/2
D:E ko biết làm chúc bạn học tốt
1. tìm GTNN của A= x(x+2)(x+4)(x+6)+8
2. tìm GTLN của B=5+(1-x)(x+2)(x+3)(x+6)3
3.tìm GTNN của C=(x+3)4 + (x-7)4
4. Cho x>0. Tìm GTNN của P=\(\dfrac{4x^2+1}{2x}\)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
3.
Đặt $x+3=a; 7-x=b$ thì $a+b=10$
$C=a^4+b^4$
Áp dụng BĐT Bunhiacopxky:
$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$
$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$
$\Rightarrow a^2+b^2\geq 50$
$\Rightarrow C\geq \frac{50^2}{2}=1250$
Vậy $C_{\min}=1250$
Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$
. Tìm GTLN, GTNN của biểu thức:
1) Tìm GTNN của biểu thức:
a) A = x2 - 7x +11. | b) D = x - 2 + x - 3 . |
c) C = 3 - 4x . x2 +1 | d) B = -5 . x2 - 4x + 7 |
e) x2 - x +1 . M = + x +1 x2 | f) P x 1 x 2 x 3 x 6 . |
2) Tìm GTLN của biểu thức
|
| 2x 2 + 4x + 9 |
|
b) | A = x 2 + 2x + 4 . |
|
| ||||||||||||||||||||
c) C = (x2 - 3x +1)(21+ 3x - x2 ) . | d) D = 6x - 8 . x2 +1 |
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
a, Tìm GTNN: A = \(\dfrac{x^2-2x+2013}{x^2}\) ; x>0
b, Tìm GTLN và GTNN của: B = \(\dfrac{4x+1}{4x^2+2}\)
a.
\(A=\dfrac{2013}{x^2}-\dfrac{2}{x}+1=2013\left(\dfrac{1}{x}-\dfrac{1}{2013}\right)^2+\dfrac{2012}{2013}\ge\dfrac{2012}{2013}\)
Dấu "=" xảy ra khi \(x=2013\)
b.
\(B=\dfrac{4x^2+2-4x^2+4x-1}{4x^2+2}=1-\dfrac{\left(2x-1\right)^2}{4x^2+2}\le1\)
\(B_{max}=1\) khi \(x=\dfrac{1}{2}\)
\(B=\dfrac{-2x^2-1+2x^2+4x+2}{4x^2+2}=-\dfrac{1}{2}+\dfrac{\left(x+1\right)^2}{2x^2+1}\ge-\dfrac{1}{2}\)
\(B_{max}=-\dfrac{1}{2}\) khi \(x=-1\)
Tìm GTLN - GTNN của các biểu thức ?
* bài 1: Tìm GTNN:
a) A= (x - 5)² + (x² - 10x)² - 24
b) B= (x - 7)² + (x + 5)² - 3
c) C= 5x² - 6x +1
d) D= 16x^4 + 8x² - 9
e) A= (x + 1)(x - 2)(x - 3)(x - 6)
f) B= (x - 2)(x - 4)(x² - 6x + 6)
g) C= x^4 - 8x³ + 24x² - 8x + 25
h) D= x^4 + 2x³ + 2x² + 2x - 2
i) A= x² + 4xy + 4y² - 6x – 12y +4
k) B= 10x² + 6xy + 9y² - 12x +15
l) C= 5x² - 4xy + 2y² - 8x – 16y +83
m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9
* Bài 2: Tìm GTLN:
a) M= -7x² + 4x -12
b) N= -16x² - 3x +14
c) M= -x^4 + 4x³ - 7x² + 12x -5
d) N= -(x² + x – 2) (x² +9x+18) +27
* Bài 3:
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y²
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y²
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³
* Bài 4: Tìm GTLN và GTNN của các biểu thức:
1) A = (3 - 4x)/(x² + 1)
2) B= (8x + 3)/(4x² + 1)
3) C= (2x+1)/(x²+2)
Tìm gtnn của
(x-1)(x-3)(x^2-4x+50)
(x^2+3x+2)(x^2+7x+12)
2x^2+2xy+y^2-2x+2y+2
Tìm GTNN của biểu thức B = x(x-3)(x+1)(x+4)
Tìm GTNN của A = \(\frac{x^2-4x+1}{x^2}\)
Tìm cả GTNN và GTLN của các biểu thức sau:
B = \(\frac{1}{2+\sqrt{4-x^2}}\)
C = \(\frac{1}{3-\sqrt{1-x^2}}\)
D = \(\sqrt{-x^2+4x+5}\)
Tìm GTNN của biểu thức:
a)A=x(x+3)(x-1)(x-4)
b)B=B=4x^4+4x^3+5x^2+4x+3
Mình đang cần gấp giúp mình với ạ
\(a,A=\left(x^2-x\right)\left(x^2-x-12\right)\\ A=\left(x^2-x\right)^2-12\left(x^2-x\right)\\ A=\left(x^2-x\right)^2-12\left(x^2-x\right)+36-36\\ A=\left(x^2-x+6\right)^2-36\ge-36\\ A_{min}=-36\Leftrightarrow x^2-x+6=0\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\\ b,B=4x^4+4x^3+5x^2+4x+3\\ B=\left(4x^4+4x^3+x^2\right)+\left(x^2+4x+4\right)-1\\ B=x^2\left(2x+1\right)^2+\left(x+2\right)^2-1\ge-1\\ B_{min}=-1\Leftrightarrow\left\{{}\begin{matrix}x\left(2x+1\right)=0\\x+2=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Vậy dấu \("="\) không xảy ra