Bai: Cho tam giác ABC vuông tại A, có góc C = 30*, kẻ đường vuông góc AH (H thuộc BC).Trên đoạn HC lấy điểm D sao cho HD = HB.Kẻ CE vuông góc với đường thẳng AD tại E.CM:
a) tam giác ABD là tam giác đều
b) tam giác ADC cân và AH = CE
c) EH // AC
cho tam giác abc vuông tại a,có góc c=30 độ,kẻ ah vuông góc bc(h thuộc bc).trên đoạn hc lấy điểm d,sao cho hd=hb
a)chứng minh tam giác ahb=tam giác ahd
b)chứng minh tam giác abd là tam giác đều
c)từ c kẻ ce vuông góc với đường thẳng ad (e thuộc ad).chứng minh de=hb
a:
a: Xet ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
=>ΔAHB=ΔAHD
b: Xét ΔABD có
AB=AD
góc B=60 độ
=>ΔABD đều
c: Xét ΔDAC có góc DAC=góc DCA
nên ΔDAC cân tại D
=>DA=DC
Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
DA=DC
góc HDA=góc EDC
=>ΔDHA=ΔDEC
=>DH=DE
Cho tam giác ABC vuông tại A góc C= 30 độ. Đường cao AH. trên đoạn thẳng HC lấy điểm D sao cho HD=HB
a, C/m tam giác AHB= tam giác AHD
b,C/m tam giác ABD là tam giác đều
c, từ C kẻ CE vuông góc đường thẳng AD(E thuộc đường thẳng AD) đường CE cắt AH tại Q. Gọi K là trung điểm AC. C/m CB là tia phân giác góc ACQ và ba điểm Q,D,K thẳng hàng
a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
Do đó;ΔAHB=ΔAHD
b: ta có: ΔAHB=ΔAHD
nên AB=AD
hay ΔABD cân tại A
mà \(\widehat{B}=60^0\)
nên ΔABD đều
xét tg AHB và tg AHD có
AH :chung
góc AHB = góc AHD (=90o)
BH=HD (gt)
=> 2 tg bằng nhau (c-g-c)
a)
Xét △AHB và △AHD có:
AH cạnh chung
HD = HB (gt)
\(\widehat{AHB}=\widehat{AHD}=90^0\)
=> △AHB = △AHD
b) Ta có: AB = AD
nên △ABD cân tại A
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\widehat{B}=180-90-30\)
\(\widehat{B}=60^0\)
Vì :
\(\)△ABD cân tại A
\(\widehat{B}=60^0\)
nên △ABD là tam giác đều
Cho tam giác ABC vuông tại A , có góc B = 2. góc C Kẻ AH vuông góc với BC(H vuông với BC) . Trên tia HC lấy điểm D sao cho HD = HB . Từ C kẻ đường thẳng CE vuông góc với đường thẳng AD (E vuông với AD).
a. Tam giác ABD là tam giác gì? Vì sao?
b. Chứng minh rằng: DH = DE và HE / / AC
c. So sánh \(HE^2\) và \(\dfrac{BC^{2-AD^2}}{4}\)
giúp mình gấp mình sẽ tick cho bạn nhanh nhất nha
a, Xét tg ABH và tg ADH có :
BH=DH(gt)
AH chung
∠AHB=∠AHC (=90 độ)
=> tg ABH = tg ADH ( c.g.c)
=> AB = AB ( 2 cạnh tương ứng )
=> tg ABD cân (1)
Trong tg ABC có : ∠A+∠B+∠C= 180 độ
=> 1/2∠B+∠B=90 độ
=> ∠B= 60 độ (2)
Từ (1) , (2) => tg ABD là tg đều
b, +) Ta có : ∠BAD + ∠DAC = ∠BAC
=> 60 độ + ∠DAC = 90 độ
=>∠DAC = 30 độ
Lại có : ∠DCA = 90 độ - 60 độ = 30 độ (3)
=> ∠DAC = ∠DCA ( =30 độ )
=> tg DAC cân tại D => AD=CD
+) Xét tg HDA và tg EDC có :
AD=CD(cmt)
∠HDA= ∠EDC ( đđ')
=> tg HDA = tg EDC ( ch-gn)
=> DH=DE( 2 cạnh tương ứng )
=> tg DHE cân tại D
+)Lại có : ∠ADC= 180 độ - ∠DAC -∠DCA= 120 độ
=>∠ADC=∠HDE(=120 độ)
=> ∠DHE = 180 - 120/2 = 30 (4)
Từ (3),(4)=> ∠DCA= ∠DHE
Mà chúng ở vị trí SLT => HE//AC
Cho tam giác ABC vuông tại A, có góc C = 30 độ, kẻ AH vuông góc BC (H thuộc BC). Trên đoạn HC lấy điểm D sao cho HD = HB.
a) Chứng minh tam giác AHB = tam giác AHD.
b) Chứng minh tam giác ABD là tam giác đều.
c) Từ C kẻ CE vuông góc với AD (E thuộc AD). Chứng minh DE = HB.
d) Từ D kẻ DF vuông góc với AC ( F thuộc AC), I là giao điểm của CE và AH. Chứng minh I, D, F thẳng hàng.
a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
=>ΔAHB=ΔAHD
=>AB=AD
b: Xét ΔABD có
AB=AD
góc B=60 độ
=>ΔABD đều
c: Xét ΔDAC có góc DAC=góc DCA=30 độ
nên ΔDAC cân tại D
Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
DA=DC
góc ADH=góc CDE
=>ΔDHA=ΔDEC
=>AH=EC
d: Xét ΔCIA có
CH,AE là đường cao
CH cắt AE tại D
=>D là trực tâm
=>ID vuông góc AC
mà DF vuông góc AC
nên I,D,F thẳng hàng
cho tam giác abc vuông tại a,có góc c=30 độ,kẻ ah vuông góc bc(h thuộc bc).trên đoạn hc lấy điểm d,sao cho hd=hb
a)chứng minh tam giác ahb=tam giác ahd
b)chứng minh tam giác abd là tam giác đều
c)từ c kẻ ce vuông góc với dduwowngff thẳng
a: Xet ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
=>ΔAHB=ΔAHD
b: Xét ΔABD có
AB=AD
góc B=60 độ
=>ΔABD đều
ho tam giác abc vuông tại a, có góc acb = 30 độ, đường vuông góc kẻ từ a cắt bc tại h. trên đoạn hc lấy điểm d sao cho hd=hb câu a/ chứng minh tam giác ahb=tam giác ahd câu b/ chứng minh tam giác abd là tam giác đều câu c/ từ c kẻ ce vuông góc với ad, (e thuộc ad). chứng minh de=hb câu d/ kẻ df vuông góc với ac, (f thuộc ac); gọi i là giao điểm của ce và ah. chứng minh: i, d, f thẳng hàng.
a: Xét ΔAHB vuông tại H và ΔAHD vuông tại H có
AH chung
HB=HD
=>ΔAHB=ΔAHD
b: Xét ΔABD có AB=AD và góc B=60 độ
nên ΔABD đều
Bai 1 cho tam giác ABC vuông tại A có góc C=30 độ đường cao AH Trên đoạn HC lấy điểm D sao cho HD=HB Từ C kẻ CE vuông góc AD chứng minh
a) Tam giác ABD là tam giác đều
b) AH = CE
a,xét tam giác AHB và tam giác AHD
có góc bằng nhau
canh bằng nhau\suy ra hai tam giácbằng nhau
suy ra ^bah=^DAH
mà BAH=30 độ(ABH=60 độ xét tam giác AHB vuông suy ra BAH=30 độ)
suy ra ^BAD=60 độ(1)
lại có BA=AD
suy ra tam giấcBDA cân (2) từ 1 vf 2 suy ra ABD dều
b,TA có ^DAC+^DAB=9o độ
suy ra DAC=30 độ
suy ra tam giác DAC cân
suy ra AD = DC
xét tam giác ADH và tam giác CDE
có AD=DC
ADH=CDE
suy ra 2 tam giác bằng nhau
suy ra AH = CE
tích đung cho mik nha
cảm ơn nha
còn bài nào thì cứ đăng lên
cho tam giác ABC vuông tại A , góc C = 30 độ kẻ AH vuông góc BC tại H . Trên HC lấy D sao cho HD=HB. Từ C kẻ CE vuông góc AD tại E ( E thuộc AD)
a) CM: tam giác ABD là tam giác đều
b) CM: EH || AC
a: ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ABC}+30^0=90^0\)
=>\(\widehat{ABC}=60^0\)
Xét ΔABD có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔABD cân tại A
Xét ΔABD cân tại A có \(\widehat{B}=60^0\)
nên ΔABD đều
b: ΔABD đều
=>\(\widehat{BAD}=60^0\)
\(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)
=>\(\widehat{CAD}+60^0=90^0\)
=>\(\widehat{CAD}=30^0\)
Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\left(=30^0\right)\)
nên ΔDAC cân tại D
=>DA=DC
Xét ΔDHA vuông tại H và ΔDEC vuông tại E có
DA=DC
\(\widehat{HDA}=\widehat{EDC}\)
Do đó: ΔDHA=ΔDEC
=>DE=DH
Xét ΔDEH và ΔDAC có
\(\dfrac{DE}{DA}=\dfrac{DH}{DC}\)(DE=DH; DA=DC)
\(\widehat{EDH}=\widehat{ADC}\)
Do đó: ΔDEH đồng dạng với ΔDAC
=>\(\widehat{DEH}=\widehat{DAC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên EH//AC
cho tam giác abc vuông tại A có AC >AB.Kẻ AH vuông góc BC,trên tia HC lấy D sao cho HD=HB.Kẻ CE vuông góc với AD kéo dài(E thuộc AD).Chứng minh:
a):tam giác ABD cân,
b)góc DAH=góc ACB,
c)kẻ DI vuông góc AD(I thuộc AC),
d) chứng minh 3 đường thẳng AH,ID,CE đồng quy.
e)so sánh ACva CD.
f)Tìm điều kiện của tam giác ABC để I là trung điểm AC
Cho tam giác ABC vuông tại A, có góc ACB = 30 độ, đường vuông góc kẻ từ A cắt BC tại H. Trên đoạn HC LẤY ĐIỂM D sao cho HD=HB câu a/ chứng minh tam giác AHB=tam giác AHD câu b/ chứng minh tam giác ABD là tam giác đều câu c/ từ C kẻ CE vuông góc với AD, (E thuộc AD). Chứng minh DE=HB câu d/ kẻ DF vuông góc với AC, (F thuộc AC); gọi I là giao điểm của CE và AH. Chứng minh: I, D, F thẳng hàng.