\(Q=\dfrac{-2015}{2016}\cdot\left(-50\right)\cdot\dfrac{-153}{154}\cdot1\dfrac{1}{2015}\cdot20\%\)
\(A=\left(1-\dfrac{1}{2}\right)\cdot1-\dfrac{1}{3}\cdot......\cdot\left(1-\dfrac{1}{2016}\right)\cdot\left(1-\dfrac{1}{2017}\right)\)
\(A=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)...\left(1-\dfrac{1}{2016}\right)\left(1-\dfrac{1}{2017}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}...\dfrac{2015}{2016}.\dfrac{2016}{2017}=\dfrac{1}{2017}\)
Giải:
\(A=\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right)...\left(1-\dfrac{1}{2016}\right).\left(1-\dfrac{1}{2017}\right)\)
\(\Leftrightarrow A=\dfrac{1}{2}.\dfrac{2}{3}...\dfrac{2015}{2016}.\dfrac{2016}{2017}\)
\(\Leftrightarrow A=\dfrac{1.2...201.2016}{2.3...2016.2017}\)
\(\Leftrightarrow A=\dfrac{1.2.3...2015.2016}{2017.2.3...2015.2016.}\)
Rút gọ cả tử và mẫu với 2.3...2015.2016, ta được:
\(A=\dfrac{1}{2017}\)
Vậy \(A=\dfrac{1}{2017}\).
Chúc bạn học tốt!
Giải:
\(A=\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right)...\left(1-\dfrac{1}{2016}\right).\left(1-\dfrac{1}{2017}\right)\)
\(A=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{2015}{2016}\cdot\dfrac{2016}{2017}\)
\(A=\dfrac{1}{2017}\)
Vậy, A= \(\dfrac{1}{2017}\)
Tính
F= \(\left(-\dfrac{1}{2015}\right)^0-\left(\dfrac{13}{27}\cdot\dfrac{162}{39}-1\right)^{2015}+\left(-\dfrac{1}{3}\right)^2\)
\(F=\left(-\dfrac{1}{2015}\right)^0-\left(\dfrac{13}{27}.\dfrac{162}{39}-1\right)^{2015}+\left(-\dfrac{1}{3}\right)^2\\ F=1-\left(2-1\right)^{2015}+\dfrac{1}{9}\\ F=1-1+\dfrac{1}{9}\\ F=\dfrac{1}{9}\)
Chúc bạn học tốt!!!
Tính hợp lý:
a, \(2008\cdot\left(\dfrac{1}{2007}-\dfrac{2009}{1004}\right)-2009\cdot\left(\dfrac{1}{2007}-2\right)\)
b,\(\dfrac{5^5\cdot20^3-5^4\cdot20^3+5^7\cdot4^5}{\left(20+5\right)^3\cdot4^5}\)
1. 2008.\(\left(\dfrac{1}{2007}-\dfrac{2009}{1004}\right)-2009\left(\dfrac{1}{2007}-2\right)\)
=\(\left(2008.\dfrac{1}{2007}-2008.\dfrac{2009}{1004}\right)-\left(2009.\dfrac{1}{2007}-2009.2\right)\)
=\(\left(\dfrac{2008}{2007}-2.2009\right)-\left(\dfrac{2009}{2007}-2.2009\right)\)
=\(\left(\dfrac{2008}{2007}-4018\right)-\left(\dfrac{2009}{2007}-4018\right)\)
=\(\dfrac{2008}{2007}-4018-\dfrac{2009}{2007}+4018\)
=\(\left(\dfrac{2008}{2007}-\dfrac{2009}{2007}\right)+\left[\left(-4018\right)+4018\right]\)
=\(\dfrac{1}{2007}.\left(2008-2009\right)+0\)
=\(\dfrac{1}{2007}.\left(-1\right)+0\)
=\(\dfrac{-1}{2007}\)
2.\(\dfrac{5^5.20^3-5^4.20^3+5^7.4^5}{\left(20+5\right)^3+4^5}\)
=\(\dfrac{5^5.\left(2^2.5\right)^3-5^4.\left(2^2.5\right)^3+5^7.\left(2^2\right)^5}{\left[\left(2^2.5\right)+5\right]^3+\left(2^2\right)^5}\)
=\(\dfrac{5^5.2^6.5^3-5^4.2^6.5^3+5^7.2^{10}}{2^6.5^3+5^3+2^{10}}\)
=\(\dfrac{5^9.2^6-5^7.2^6+5^7.2^{10}}{5^3.\left(2^6+1\right)+2^{10}}\)
=\(\dfrac{5^7.2^6\left(5^2-1-2^4\right)}{5^3\left(2^6+1\right)+2^{10}}\)
bí rồi
Tính giá trị của các biểu thức sau
1) \(A=1+2+2^2+...+2^{2015}\)
2) \(B=\left(\dfrac{1}{4}-1\right)\cdot\left(\dfrac{1}{9}-1\right)\cdot\left(\dfrac{1}{16}-1\right)\cdot\cdot\cdot\cdot\cdot\left(\dfrac{1}{400}-1\right)\)
3) \(C=\left(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+\dfrac{1}{14\cdot19}+...+\dfrac{1}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)
4) \(D=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)
5) \(E=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}-\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}-\dfrac{3}{2004}}\)
6) Cho 13+23+...+103=3025
Tính S= 23+43+63+...+203
Tính
\(A=\left(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}+1\right)\left(\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}\right)-\left(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}\right)\left(\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}+1\right)\)
Đặt \(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}=B;\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}=C\)
\(A=\left(B+1\right)\cdot C-B\cdot\left(C+1\right)\)
\(=BC+C-BC-B\)
=C-B
\(=\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}-\dfrac{1}{5}-\dfrac{2013}{2014}-\dfrac{2015}{2016}=-\dfrac{1}{10}\)
\(A=\left(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}+1\right)\left(\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}\right)-\left(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}\right)\left(\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}+1\right)\)
tất nhên là bằng 00000000000000000000000000000000000000
Tính giá trị của các biểu thức sau
1) \(A=1+2+2^2+...+2^{2015}\)
2) \(B=\left(\dfrac{1}{4}-1\right)\cdot\left(\dfrac{1}{9}-1\right)\cdot\left(\dfrac{1}{16}-1\right)\cdot\cdot\cdot\cdot\cdot\left(\dfrac{1}{400}-1\right)\)
3) \(C=\left(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+\dfrac{1}{14\cdot19}+...+\dfrac{1}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)
4) \(D=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)
5) \(E=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}-\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}-\dfrac{3}{2004}}\)
6) Cho 13+23+...+103=3025
Tính S= 23+43+63+...+203
1) \(A=1+2+2^2+2^3+......+2^{2015}\)
\(\Leftrightarrow2A=2+2^2+2^3+......+2^{2016}\)
\(\Leftrightarrow2A-A=\left(2+2^2+2^3+......+2^{2016}\right)-\left(1+2+2^2+2^3+......+2^{2015}\right)\)
\(\Leftrightarrow A=2^{2016}-1\)
Vậy \(A=2^{2016}-1\)
6)Ta có: \(13+23+33+43+.......+103=3025\)
\(\Leftrightarrow2.13+2.23+2.33+2.43+.......+2.103=2.3025\)
\(\Leftrightarrow26+46+66+86+.......+206=6050\)
\(\Leftrightarrow\left(23+3\right)+\left(43+3\right)+\left(63+3\right)+\left(83+3\right)+.......+\left(203+3\right)=6050\)
\(\Leftrightarrow23+43+63+83+.......+203+3.10=6050\)
\(\Leftrightarrow23+43+63+83+.......+203+=6050-30\)
\(\Leftrightarrow23+43+63+83+.......+203+=6020\)
Vậy S=6020
b, B có 19 thừa số
=> \(-B=(1-\frac{1}{4})(1-\frac{1}{9})(1-\frac{1}{16})...(1-\frac{1}{400}) \)
<=>\(-B=\frac{(2-1)(2+1)(3-1)(3+1)(4-1)(4+1)...(20-1)(20+1)}{4.9.16...400} \)
<=>\(-B=\frac{(1.2.3.4...19)(3.4.5...21)}{(2.3.4.5.6...20)(2.3.4.5...20)} \)
<=>\(-B=\frac{21}{20.2} =\frac{21}{40} \)
<=>\(B=\frac{-21}{40} \)
Tính giá trị của các biểu thức sau 1) \(A=1+2+2^2+...+2^{2015}\) 2) \(B=\left(\dfrac{1}{4}-1\right)\cdot\left(\dfrac{1}{9}-1\right)\cdot\left(\dfrac{1}{16}-1\right)\cdot\cdot\cdot\cdot\cdot\left(\dfrac{1}{400}-1\right)\) 3) \(C=\left(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+\dfrac{1}{14\cdot19}+...+\dfrac{1}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\) 4) \(D=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\) 5) \(E=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}-\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}-\dfrac{3}{2004}}\) 6) Cho 13+23+...+103=3025 Tính S= 23+43+63+...+203
1/S=\(\left(1+\dfrac{1}{2}\right)\cdot\left(1+\dfrac{1}{3}\right)\cdot\left(1+\dfrac{1}{4}\right)\cdot...\cdot\left(1+\dfrac{1}{100}\right)\)
2/B=\(\left(1-\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}\right)\cdot...\cdot\left(1-\dfrac{1}{2007}\right)\)
3/C=\(\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot...\cdot\dfrac{100^2}{99\cdot101}\)
1: \(S=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{101}{100}=\dfrac{101}{2}\)
2: \(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2006}{2007}=\dfrac{1}{2007}\)