Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Online Math
Xem chi tiết
Lê Anh Duy
28 tháng 3 2019 lúc 12:37

Ta có

\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\Rightarrow\left(5a+3b\right)\left(5c-3d\right)=\left(5c+3d\right)\left(5a-3b\right)\)

\(\Rightarrow25ac-15ad+15bc-9bd-25ac+15bc-15ad+9bd=0\)

\(\Rightarrow-30ad+30bc=0\)

\(\Rightarrow-30ad=-30bc\Rightarrow ad=bc\)

hay \(\frac{a}{b}=\frac{c}{d}\) ( ĐPCM)

\(\)

Nguyễn Đình Huy
28 tháng 3 2019 lúc 19:58

Ta có

5a+3b5a−3b=5c+3d5c−3d⇒(5a+3b)(5c−3d)=(5c+3d)(5a−3b)5a+3b5a−3b=5c+3d5c−3d⇒(5a+3b)(5c−3d)=(5c+3d)(5a−3b)

⇒25ac−15ad+15bc−9bd−25ac+15bc−15ad+9bd=0⇒25ac−15ad+15bc−9bd−25ac+15bc−15ad+9bd=0

⇒−30ad+30bc=0⇒−30ad+30bc=0

⇒−30ad=−30bc⇒ad=bc⇒−30ad=−30bc⇒ad=bc

hay ab=cdab=cd ( ĐPCM)

Thụy Lâm
18 tháng 6 2019 lúc 11:49

Với Kho Đề đã được cập nhật, hiện tại Đáp Án Chi Tiết môn TOÁN Kỳ thi THPT quốc gia đã có trên Ứng Dụng. Các bạn tha hồ kiểm tra đối chiếu với bài làm của mình rồi nhé Tải ngay App về để xem đáp án chi tiết nào: https://giaingay.com.vn/downapp.html

Phạm Công Nhật Tân
Xem chi tiết
Lê Anh Tú
19 tháng 8 2017 lúc 22:02

dãy số bằng nhau ta có:

\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)

\(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)tính chất tỉ lệ thức

\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\Rightarrow\left(đcpm\right)\)

Đoàn Văn Toàn
Xem chi tiết
Crazy Boys
Xem chi tiết
Nguyễn Đình Dũng
5 tháng 11 2016 lúc 12:17

Từ \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)

<=> (5a+3b)(5c-3d) = (5c+3d)(5a-3b)

<=> 25ac - 15ad + 15bc - 9bd = 25ca - 15cb + 15da - 9db

<=> -15ad + 15bc = -15cb + 15da

<=> ad = bc

<=> \(\frac{a}{b}=\frac{c}{d}\)

Nguyễn Thùy Duyên
Xem chi tiết
Trần Thanh Phương
18 tháng 8 2018 lúc 10:07

\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\frac{5a+3b}{5a-3b}=\frac{5bk+3b}{5bk-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(1\right)\)

\(\frac{5c+3d}{5c-3d}=\frac{5dk+3d}{5dk-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(2\right)\)

Từ (1) và (2) => đpcm

Lý Mạnh Trường
Xem chi tiết
hoctro
12 tháng 4 2017 lúc 12:55

Đặt a/b=b/c=k

Suy ra a=bk , c=dk

Suy ra 5a + 3b/ 5a - 3b= 5bk + 3b / 5bk - 3b = b(5k + 3) / b(5k - 3 ) = 5k + 3 / 5k - 3  (1)

           5c + 3d / 5c - 3d = 5dk + 3d / 5dk - 5d = d(5k + 3) / d(5k - 3 ) = 5k + 3 / 5k - 3  (2)

Từ (1) và (2) suy ra (đpcm)

con mẹ thằng ngu thấy bố mày chưa

Vũ Như Mai
12 tháng 4 2017 lúc 12:55

Đây là bài giải của bạn Trần Như cách đây lâu rồi. Mình ghi lại vì không cop được link.

Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{5a}{5c}=\frac{3b}{3d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)

Từ: \(\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)áp dụng tính chất của tỉ lệ thức ta được:

\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)

Chang Mai
Xem chi tiết
Thuy Nguyen
24 tháng 5 2016 lúc 15:11

cho \(\frac{a}{b}\)=\(\frac{c}{d}\)=k=> a=bk; c=dk

a. Vế trái =\(\frac{5a+3b}{5a-3b}\)=\(\frac{5bk+3b}{5bk-3b}\)=\(\frac{b\left(5k+3\right)}{b\left(5k-3\right)}\)=\(\frac{\left(5k+3\right)}{\left(5k-3\right)}\)(1)

Vế phải =\(\frac{5c+3d}{5c-3d}\)=\(\frac{5dk+3d}{5dk-3d}\)=\(\frac{d\left(5k+3\right)}{d\left(5k-3\right)}\)=\(\frac{\left(5k+3\right)}{\left(5k-3\right)}\)(2)

Từ (1) và (2) ta có\(\frac{5a+3b}{5a-3b}\)=\(\frac{5c+3d}{5c-3d}\)

b. Vế trái=\(\frac{7a^2+3ab}{11a^2-8b^2}\)=\(\frac{7b^2k^2+3b.k.b}{11b^2.k^2-8b^2}\)=\(\frac{b^2.k\left(7k+3\right)}{b^2\left(11k^2-8\right)}\)=\(\frac{k\left(7k+3\right)}{\left(11k^2-8\right)}\)(1)

Vế phải =\(\frac{7c^2+3cd}{11c^2-8d^2}\)=\(\frac{7d^2k^2+3d.k.d}{11d^2.k^2-8d^2}\)=\(\frac{d^2.k\left(7k+3\right)}{d^2\left(11k^2-8\right)}\)=\(\frac{k\left(7k+3\right)}{\left(11k^2-8\right)}\)(2)

Từ (1) và (2) ta có: \(\frac{7a^2+3ab}{11a^2-8b^2}\)=\(\frac{7c^2+3cd}{11c^2-8d^2}\)

Chang Mai
24 tháng 5 2016 lúc 13:21

giups mình với cảm ơn

 

Huỳnh Thị Thu Uyên
Xem chi tiết
Nguyễn Huy Tú
19 tháng 10 2016 lúc 12:24

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có:
\(\frac{5a+3b}{5a-3b}=\frac{5bk+3b}{5bk-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(1\right)\)

\(\frac{5c+3d}{5c-3d}=\frac{5dk+3d}{5dk-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{5a+3b}{5a-3b}=\frac{5x+3d}{5c-3d}\)

Vậy \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)

Phạm Nguyễn Tất Đạt
19 tháng 10 2016 lúc 17:19

Ta có:\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{5a}{5c}=\frac{3b}{3d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{5a}{5c}=\frac{3b}{3d}=\frac{5a+3b}{5c+3d}=\frac{5a-3b}{5c-3d}\)

\(\Rightarrow\)\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)(đpcm)

 

Nguyen Tung
5 tháng 11 2020 lúc 16:16

cho tam giác abc trên cạnh ab lấy điểm m trên nửa mặt phẳng bờ ab có chứa điểm c và tia mx sao cho góc aox = góc b

A) chứng minh rằng mx song song với bc mx cắt ac

B) trên nửa mặt phẳng bờ ac không chứa điểm b vẽ tia ay sao cho góc bằng acb trên nửa mặt phẳng bờ ab không chứa điểm c vẽ tia oy sao cho góc bac bằng góc abc chứng minh rằng ac và ab là hai tia đối nhau

C) chứng tỏ tổng các góc trong tam giác abc là bằng 180 độ

Khách vãng lai đã xóa
Xem chi tiết

          \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\)

          \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)

   \(\dfrac{a}{c}\)  =  \(\dfrac{5a}{5c}\) = \(\dfrac{3b}{3d}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

      \(\dfrac{a}{c}\) =   \(\dfrac{5a+3b}{5c+3d}\) (1) 

       \(\dfrac{a}{c}\) = \(\dfrac{5a-3b}{5c-3d}\)  (2)

Kết hợp (1) và (2) ta có:

       \(\dfrac{5a+3b}{5c+3d}\) =  \(\dfrac{5a-3b}{5c-3d}\) 

⇒   \(\dfrac{5a+3b}{5a-3b}\) =  \(\dfrac{5c+3d}{5c-3d}\) (đpcm)

 

   

      

 

 

   

 

b;   \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) 

      \(\dfrac{a}{b}\) =  \(\dfrac{3a}{3b}\) = \(\dfrac{2c}{2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

     \(\dfrac{a}{b}\) = \(\dfrac{3a+2c}{3b+2d}\) (đpcm)