Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Chang Mai

CMR: nếu \(\frac{a}{b}=\frac{c}{d}thì\left(a\right)\frac{5a+3b}{5a-3b}-\frac{5c+3d}{5c-3d}\)

b) \(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)

Thuy Nguyen
24 tháng 5 2016 lúc 15:11

cho \(\frac{a}{b}\)=\(\frac{c}{d}\)=k=> a=bk; c=dk

a. Vế trái =\(\frac{5a+3b}{5a-3b}\)=\(\frac{5bk+3b}{5bk-3b}\)=\(\frac{b\left(5k+3\right)}{b\left(5k-3\right)}\)=\(\frac{\left(5k+3\right)}{\left(5k-3\right)}\)(1)

Vế phải =\(\frac{5c+3d}{5c-3d}\)=\(\frac{5dk+3d}{5dk-3d}\)=\(\frac{d\left(5k+3\right)}{d\left(5k-3\right)}\)=\(\frac{\left(5k+3\right)}{\left(5k-3\right)}\)(2)

Từ (1) và (2) ta có\(\frac{5a+3b}{5a-3b}\)=\(\frac{5c+3d}{5c-3d}\)

b. Vế trái=\(\frac{7a^2+3ab}{11a^2-8b^2}\)=\(\frac{7b^2k^2+3b.k.b}{11b^2.k^2-8b^2}\)=\(\frac{b^2.k\left(7k+3\right)}{b^2\left(11k^2-8\right)}\)=\(\frac{k\left(7k+3\right)}{\left(11k^2-8\right)}\)(1)

Vế phải =\(\frac{7c^2+3cd}{11c^2-8d^2}\)=\(\frac{7d^2k^2+3d.k.d}{11d^2.k^2-8d^2}\)=\(\frac{d^2.k\left(7k+3\right)}{d^2\left(11k^2-8\right)}\)=\(\frac{k\left(7k+3\right)}{\left(11k^2-8\right)}\)(2)

Từ (1) và (2) ta có: \(\frac{7a^2+3ab}{11a^2-8b^2}\)=\(\frac{7c^2+3cd}{11c^2-8d^2}\)

Chang Mai
24 tháng 5 2016 lúc 13:21

giups mình với cảm ơn

 


Các câu hỏi tương tự
Huỳnh Yến Nhi
Xem chi tiết
nguyễn ngọc tuấn
Xem chi tiết
Crazy Boys
Xem chi tiết
Vũ Duy
Xem chi tiết
Nguyen Thi Thanh Thao
Xem chi tiết
Nguyễn Thảo Hân
Xem chi tiết
Nguyễn Thị Hồng Diễm
Xem chi tiết
Huỳnh Thanh Hương
Xem chi tiết
tống lê kim liên
Xem chi tiết