Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyễn ngọc tuấn

Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) CMR:

a) \(\left(\dfrac{a-b}{c-d}\right)^4=\dfrac{a^4+b^4}{c^4+d^4}\)

b) \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)

c) \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)

 Mashiro Shiina
17 tháng 8 2017 lúc 21:57

Mk chỉ làm 1 câu thôi mấy câu sau tương tự theo cách đó nhoa:v

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\Rightarrow\left(\dfrac{a-b}{c-d}\right)^4=\left(\dfrac{bk-b}{dk-d}\right)^4=\left[\dfrac{b\left(k-1\right)}{d\left(k-1\right)}\right]^4=\dfrac{b^4}{d^4}\)

\(\dfrac{a^4+b^4}{c^4+d^4}=\dfrac{bk^4+b^4}{dk^4+d^4}=\dfrac{b^4\left(k^4+1\right)}{d^4\left(k^4+1\right)}=\dfrac{b^4}{d^4}\)

\(\Rightarrow\left(\dfrac{a-b}{c-d}\right)^4=\dfrac{a^4+b^4}{c^4+d^4}\Rightarrowđpcm\)

Sakura Nguyen
17 tháng 8 2017 lúc 23:35

Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a^4}{c^4}\)=\(\dfrac{b^4}{d^4}\)=\(\dfrac{a^4+b^4}{c^4+d^4}\)(1)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{a-b}{c-d}\)=\(\left(\dfrac{a-b}{c-d}\right)^4\)(2)
Từ (1) và (2)suy ra:
\(\left(\dfrac{a-b}{c-d}\right)^4\)=\(\dfrac{a^4+b^4}{c^4+d^4}\)(đpcm)
b) Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)=\(\dfrac{5a}{5c}\)=\(\dfrac{3b}{3d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{5a}{5c}\)=\(\dfrac{3b}{3d}\)=\(\dfrac{5a+3b}{5c+3d}\)(1)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{5a}{5b}\)=\(\dfrac{3b}{3d}\)=\(\dfrac{5a-3b}{5c-3d}\)(2)
Từ (1) và (2) suy ra:
\(\dfrac{5a+3b}{5c+3d}\)=\(\dfrac{5a-3b}{5c-3d}\)=\(\dfrac{5a+3b}{5a-3b}\)=\(\dfrac{5c+3d}{5c-3d}\) (đpcm)
c) Theo đề bài ta có:
\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{d}\)
Do đó: \(\dfrac{a}{c}\).\(\dfrac{b}{d}\)=\(\left(\dfrac{a}{c}\right)^2\)\(\dfrac{a}{c}\).\(\dfrac{b}{d}\)=\(\left(\dfrac{b}{d}\right)^2\)
=>\(\dfrac{ab}{cd}\)=\(\dfrac{a^2}{c^2}\)\(\dfrac{ab}{cd}\)=\(\dfrac{b^2}{d^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{ab}{cd}\)=\(\dfrac{a^2}{c^2}\)=\(\dfrac{b^2}{d^2}\)=\(\dfrac{7a^2}{7c^2}\)=\(\dfrac{8b^2}{8d^2}\)=\(\dfrac{3ab}{3cd}\)=\(\dfrac{7a^2+3ab}{7c^2+3cd}\)(1)
Ta có: \(\dfrac{a^2}{c^2}\)=\(\dfrac{b^2}{d^2}\)=> \(\dfrac{11a^2}{11c^2}\)=\(\dfrac{8b^2}{8d^2}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{a^2}{c^2}\)=\(\dfrac{b^2}{d^2}\)=\(\dfrac{11a^2}{11c^2}\)=\(\dfrac{8b^2}{8d^2}\)=\(\dfrac{11a^2-8b^2}{11c^2-8d^2}\)(2)
Từ (1) và (2) suy ra:
\(\dfrac{7a^2+3ab}{7c^2+3cd}\)=\(\dfrac{11a^2-8b^2}{11c^2-8d^2}\)=\(\dfrac{7a^2+3ab}{11a^2-8b^2}\)=\(\dfrac{7c^2+3cd}{11c^2-8d^2}\)


Các câu hỏi tương tự
Chang Mai
Xem chi tiết
Huỳnh Yến Nhi
Xem chi tiết
Trúc Ly
Xem chi tiết
nguyễn hồng hạnh
Xem chi tiết
hoàng bắc nguyệt
Xem chi tiết
Huỳnh Thanh Hương
Xem chi tiết
Nguyễn Thị Kim chung
Xem chi tiết
___Vương Tuấn Khải___
Xem chi tiết
Lê Thị Ngọc Duyên
Xem chi tiết