Cho đường thẳng (d): x-y-1=0. Tất cả đường thẳng (d') đi qua M (2;1) và tạo với đường thẳng (d) một góc 45 độ
Cho các hàm 1 số bậc nhất y = (m - 1)x + m - 1 có c dỗ thị là đường thăng (d) và y=-x+1 có đồ thị là đường thẳng (d)
a) Với m = 2, tìm tọa độ giao điểm của hai đường thẳng (d) và (d).
b) Tìm tất tất cả các giá trị của m để đường thẳng (d) đi qua điểm A(3; 4).
c) Tìm tất cả các giá trị của m để đường thẳng (d) cắt đường thẳng (d).
a: Thay m=2 vào y=(m-1)x+m-1, ta được:
y=(2-1)x+2-1=x+1
Phương trình hoành độ giao điểm là:
x+1=-x+1
=>2x=0
=>x=0
Thay x=0 vào y=x+1, ta được:
y=0+1=1
Vậy: Tọa độ giao điểm là A(0;1)
b: Thay x=3 và y=4 vào y=(m-1)x+m-1, ta được;
3(m-1)+m-1=4
=>4(m-1)=4
=>m-1=1
=>m=2
c: Để hai đường thẳng này cắt nhau thì \(m-1\ne-1\)
=>\(m\ne0\)
: Cho đường thẳng: (d): y = (2m – 1)x + m – 2.
1) Tìm m để đường thẳng (d):
a. Đi qua điểm A(1; 6).
b. Song song với đường thẳng 2x + 3y – 5 = 0.
c. Vuông góc với đường thẳng x + 2y + 1 = 0.
2) Tìm điểm cố định mà (d) luôn đi qua với mọi m.
mn giảng giúp mình với, tại mình không hiểu ý ạ:( camon mn nhiều ạ
1.
\(a,\Leftrightarrow2m-1+m-2=6\Leftrightarrow3m=9\Leftrightarrow m=3\\ b,2x+3y-5=0\Leftrightarrow3y=-2x+5\Leftrightarrow y=-\dfrac{2}{3}x+\dfrac{5}{3}\)
Để \(\left(d\right)\text{//}y=-\dfrac{2}{3}x+\dfrac{5}{3}\Leftrightarrow\left\{{}\begin{matrix}2m-1=-\dfrac{2}{3}\\m-2\ne\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{1}{6}\\m\ne\dfrac{11}{3}\end{matrix}\right.\Leftrightarrow m=\dfrac{1}{6}\)
\(c,x+2y+1=0\Leftrightarrow2y=-x-1\Leftrightarrow y=-\dfrac{1}{2}x-\dfrac{1}{2}\\ \left(d\right)\bot y=-\dfrac{1}{2}x-\dfrac{1}{2}\Leftrightarrow\left(-\dfrac{1}{2}\right)\left(2m-1\right)=-1\\ \Leftrightarrow\dfrac{1}{2}\left(2m-1\right)=1\Leftrightarrow m-\dfrac{1}{2}=1\Leftrightarrow m=\dfrac{3}{2}\)
2.
Gọi điểm cố định đó là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(2m-1\right)x_0+m-2\\ \Leftrightarrow2mx_0+m-x_0-2-y_0=0\\ \Leftrightarrow m\left(2x_0+1\right)-\left(x_0+y_0+2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x_0=-1\\x_0+y_0+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-\dfrac{1}{2}\\y_0=-\dfrac{3}{2}\end{matrix}\right.\)
Bài 1: Vẽ đường thẳng a. Lấy A thuộc a, B thuộc a, C thuộc a , D ko thuộc a.Kẻ các đường thẳng đi qua các cặp điểm.
a)Kẻ được tất cả bao nhiêu đường thẳng ( phân biệt )?
b)Viết tên các đường thẳng đó?
c)D là giao điểm của những đường thẳng nào?
Bài 2:Cho 2 điểm A,B.
a)Vẽ đường thẳng đi qua điểm A. Có tất cả bao nhiêu đường thẳng?
b)Vẽ đường thẳng đi qua A và B. Có tất cả bao nhiêu đường thẳng?
Bài 3:Cho 3 điểm X,Y,Z ko thẳng hàng. Ta nói gì về 2 đường thẳng XY và XZ?
Cho đường thẳng d: y = (m – 2)x + 3m + 1 (m là tham số)
a. Tìm m biết đường thẳng d đi qua J(1; 3)
b. Với m tìm được hãy tính khoảng cách từ O (0; 0) đến đường thẳng d.
a: Thay x=1 và y=3 vào d, ta được:
\(m-2+3m+1=3\)
\(\Leftrightarrow4m=4\)
hay m=1
Cho hai đường thẳng d: (m – 2)x +(m – 6)y + m – 1= 0, ∆: (m – 4)x + (2m – 3)y – m + 5 = 0. Tất cả giá trị của m để hai đường thẳng cắt nhau là
A.m ≠ 3
B.m ≠ 6
C.m ≠ 3 và m ≠ - 6
D.không có m thỏa mãn
Xét hệ phương trình m − 2 x + m − 6 y = − m + 1 m − 4 x + 2 m − 3 y = m − 5 có định thức cấp hai là
D = m − 2 m − 6 m − 4 2 m − 3 = m − 2 . 2 m − 3 − m − 4 . m − 6
= m 2 + 3 m − 18 = m − 3 m + 6
Để hai đường thẳng cắt nhau thì hệ phương trình có nghiệm duy nhất
⟺ D ≠ 0 ⟺ m ≠ 3 m ≠ − 6
ĐÁP ÁN C
Cho đường thẳng d: (m – 2)x + (m – 6 )y + m – 1 = 0. Khi m thay đổi thì đường thẳng d luôn đi qua điểm có tọa độ?
A. (3; 4)
B. (-2; 1)
C. 5 4 ; - 1 4
D. - 5 4 ; 1 4
Ta có (m – 2)x + (m – 6)y + m – 1 = 0 đúng với mọi m
⇔ mx - 2x + my - 6y + m – 1= 0 đúng với mọi m
⇔ (mx + my + m ) + ( -2x – 6y - 1)= 0 đúng với mọi m
⇔ m (x + y + 1) – (2x + 6y + 1) = 0 đúng với mọi m
Điểm cố định của d thỏa mãn
Đáp án D
Câu 1:Cho bốn điểm A, B, X, Y trong đó không có ba điểm nào thẳng hàng. Kẻ các đường thẳng đi qua các cặp điểm. Có tất cả bao nhiêu đường thẳng? Đó là những đường thẳng nào?
Câu 2:Cho bốn điểm M, N, C, D trong đó ba điểm M, N, C thẳng hàng còn ba điểm N, C, D không thẳng hàng. Kẻ các đường thẳng đi qua các cặp điểm. Có tất cả bao nhiêu đường thẳng? Đó là những đường thẳng nào?
Câu 3:Cho trước 5 điểm trong đó không có ba điểm nào thẳng hàng. Vẽ các đường thẳng đi qua các cặp điểm.
a) Hỏi vẽ được bao nhiêu đường thẳng?
b) Nếu thay 5 điểm bằng n điểm (nN, n 2) thì vẽ được bao nhiêu đường thẳng?
Câu 4:Cho trước 100 điểm trong đó không có ba điểm nào thẳng hàng. Vẽ các đường thẳng đi qua các cặp điểm. Hỏi có tất cả bao nhiêu đường thẳng?
Trong mặt phẳng tọa độ Oxy cho đường thẳng d : y = 2(a+1)x+15-2a và Parabol (P) : y=x2 (a là tham số )
1) Tìm giá trị của a để đường thẳng d đi qua điểm A(-1 ; 1)
2) Tìm tất cả các giá trị a>0 để đường thẳng d và Parabol (P) cắt nhau tại hai điểm phân biệt B(x1 ; y2 ) thỏa mãn x1x2 +y1 +y2 =2a +27
1: Thay x=-1 và y=1 vào (d), ta được:
-2(a+1)+15-2a=1
=>-2a+2+15-2a=1
=>-4a+17=1
=>-4a=-16
hay a=4
2: Phươg trình hoành độ giao điểm là:
\(x^2-\left(2a+2\right)x-15+2a=0\)
\(\text{Δ}=\left(2a+2\right)^2-4\left(2a-15\right)\)
\(=4a^2+8a+4-8a+60\)
\(=4a^2+64>0\)
Do đó: (P) luôn cắt (d) tại hai điểm phân biệt
2: Theo đề, ta có: \(x_1+x_2+x_1^2+x_2^2=2a+27\)
\(\Leftrightarrow\left(x_1+x_2\right)+\left(x_1+x_2\right)^2-2x_1x_2=2a+27\)
\(\Leftrightarrow2a+27=\left(2a+2\right)+\left(2a+2\right)^2-2\left(2a-15\right)\)
\(\Leftrightarrow4a^2+8a+4+2a+2-4a+30=2a+27\)
\(\Leftrightarrow4a^2+6a+36-2a-27=0\)
\(\Leftrightarrow4a^2+4a+9=0\)
hay \(a\in\varnothing\)
cho đường thẳng d y = (m + 2) x + m Tìm m để d
a, song song với đường thẳng d1 : y = -2 x + 3
b ,vuông góc với đường thẳng d2 : y = 1 / 3 x + 1
C, đi qua điểm N( 1,3)
D, Tìm điểm cố định Mà D luôn đi qua với mọi m
\(a,d//d_1\Leftrightarrow\left\{{}\begin{matrix}m+2=-2\\m\ne3\end{matrix}\right.\Leftrightarrow m=-4\\ b,d\perp d_2\Leftrightarrow\dfrac{1}{3}\left(m+2\right)=-1\Leftrightarrow m+2=-3\Leftrightarrow m=-5\\ c,d.qua.N\left(1;3\right)\Leftrightarrow x=1;y=3\Leftrightarrow3=m+2+m\\ \Leftrightarrow2m=1\Leftrightarrow m=\dfrac{1}{2}\)
\(d,\) Gọi điểm đó là \(A\left(x_1;y_1\right)\)
\(\Leftrightarrow y_1=\left(m+2\right)x_1+m\\ \Leftrightarrow y_1-mx_1-2x_1-m=0\\ \Leftrightarrow-m\left(x_1+1\right)+y_1-2x_1=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_1+1=0\\y_1-2x_1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-1\\y_1=-2\end{matrix}\right.\)
Vậy \(A\left(-1;-2\right)\) luôn đi qua D với mọi m