Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kudo Shinichi
Xem chi tiết
Trịnh Gia Bảo
22 tháng 11 2020 lúc 20:09

MK KO BT MK MỚI HO C LỚP 6

AI HỌC LỚP 6 CHO MK XIN

Khách vãng lai đã xóa
Phạm Xuân Thắng
Xem chi tiết
Hquynh
3 tháng 5 2023 lúc 19:01

\(a,A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)

Bậc của đa thức \(3\)

Hệ số cao nhất là \(1\)

\(b,B\left(x\right)=A\left(x\right).\left(x-1\right)=\left(x^3+x-10\right)\left(x-1\right)\\ =x^3.x+x.x-10x-x^3-x+10\\ =x^4+x^2-x^3-x-10x+10\\ =x^4-x^3+x^2-11x+10\)

Thay \(x=2\) vào \(B\left(x\right)\)

\(=2^4-2^3+2^2-11.2+10\\ =0\) 

Vậy tại \(x=2\) thì \(B\left(x\right)=0\)

Trần Nam Khánh
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 8 2021 lúc 21:33

a:Ta có: \(A=-4x^2+x-1\)

\(=-4\left(x^2-\dfrac{1}{4}x+\dfrac{1}{4}\right)\)

\(=-4\left(x^2-2\cdot x\cdot\dfrac{1}{8}+\dfrac{1}{64}+\dfrac{63}{64}\right)\)

\(=-4\left(x-\dfrac{1}{8}\right)^2-\dfrac{63}{16}\le-\dfrac{63}{16}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{8}\)

b: Ta có: \(B=-3x^2+5x+6\)

\(=-3\left(x^2-\dfrac{5}{3}x-2\right)\)

\(=-3\left(x^2-2\cdot x\cdot\dfrac{5}{6}+\dfrac{25}{36}-\dfrac{97}{36}\right)\)

\(=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{12}\le\dfrac{97}{12}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{6}\)

c: Ta có: \(C=-x^2+3x+4\)

\(=-\left(x^2-3x-4\right)\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{25}{4}\right)\)

\(=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)

Thành Đạt 8.3
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2021 lúc 11:17

b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)

\(=2x^2-3x+1\)

Hoàng Lê Huy
Xem chi tiết
Akai Haruma
30 tháng 4 2022 lúc 23:32

Bài 1:
1. 

$6x^3-2x^2=0$

$2x^2(3x-1)=0$

$\Rightarrow 2x^2=0$ hoặc $3x-1=0$

$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức

2.

$|3x+7|\geq 0$

$|2x^2-2|\geq 0$

Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$

$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý) 

Vậy đa thức vô nghiệm.

Akai Haruma
30 tháng 4 2022 lúc 23:34

Bài 2:

1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$

Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$

Do đó đa thức vô nghiệm

2.

$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$

$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$

Vậy đa thức khác 0 với mọi $x$

Do đó đa thức không có nghiệm.

Akai Haruma
30 tháng 4 2022 lúc 23:37

Bài 3:

$f(0)=a.0^3+b.0^2+c.0+d=d=5$

$f(1)=a+b+c+d=4$

$a+b+c=4-d=-1(*)$
$f(2)=8a+4b+2c+d=31$

$8a+4b+2c=31-d=26$

$4a+2b+c=13(**)$
$f(3)=27a+9b+3c+d=88$
$27a+9b+3c=88-d=83(***)$

Từ $(*); (**); (***)$ suy ra $a=\frac{1}{3}; b=13; c=\frac{-43}{3}$

Vậy.......

vương minh phong
Xem chi tiết
Trkhanhchi
Xem chi tiết
Phạm Thành Đạt
30 tháng 3 2023 lúc 20:23

a)⇔A= x4+2x3-5x+9+2x4-2x3= 3x4-5x+9

  ⇔B= 2x2-6x+2-3x4-2x2+3x-4= -3x4-3x-2

b)A(x)+B(x)= 3x4-5x+9-3x4-3x-2= -8x+7

  A(x)-B(x)= 3x4-5x+9+3x4+3x+2= 6x4-2x+1

c)C(x) có hệ số tự do bằng 0 nên có nghiệm bằng 0

d)A(x)+5x= 3x4+9. Tại x bất kì thì 3x4≥0 ⇔ 3x4+9 ≥ 9 ≥ 0

⇒ H(x) vô nghiệm

Vũ Thị Diệu Linh
Xem chi tiết
Vũ Thị Diệu Linh
27 tháng 7 2021 lúc 14:07

nhanh giùm mình được không

 

Nguyễn Lê Phước Thịnh
27 tháng 7 2021 lúc 14:37

Bài 1: 

a) Ta có: \(P=1+\dfrac{3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{8x^2}{4x^2\left(x-2\right)}-\dfrac{3x}{3\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{4}{x-2}-\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\dfrac{4\left(x+2\right)-x-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{4x+8-x-x+2}\)

\(=1+3\cdot\dfrac{\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=1+\dfrac{3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{\left(x+3\right)\left(2x+10\right)+3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{2x^2+10x+6x+30+3x-6}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{2x^2+19x-6}{\left(x+3\right)\left(2x+10\right)}\)

meo xinh
Xem chi tiết

Ta có f(x)=0f(x)=0
x2−5x+4=0⇔x2−5x+4=0
x2−4xx+4=0⇔x2−4x−x+4=0
x(x−4)−(x−4)=0⇔x(x−4)−(x−4)=0
⇔(x−1)(x−4)=0⇔(x−1)(x−4)=0
x=1⇔x=1 hoặc x=4x=4
Vậy: . . .
b) f(x) = 2x2x2 + 3x + 1
Ta có f(x)=0f(x)=0
⇔2x2+3x+1=0⇔2x2+3x+1=0
⇔2x2+2x+x+1=0⇔2x2+2x+x+1=0
⇔2x(x+1)+(x+1)=0⇔2x(x+1)+(x+1)=0
⇔(x+1)(2x+1)=0⇔(x+1)(2x+1)=0
x=−1⇔x=−1 hoặc x=−12x=−12
Vậy: . . .

Tẫn
30 tháng 4 2019 lúc 17:18

a, Để \(x\) là nghiệm của \(f\left(x\right)\)thì: 

\(x^2-5x+4=0\)

\(\Leftrightarrow x^2-x-\left(4x+4\right)=0\)

\(\Leftrightarrow x\left(x-1\right)+4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-4\end{cases}}}\)

Vậy \(x=1,x=-4\)là hai nghiệm của \(f\left(x\right)\)

b, Để \(x\)là nghiệm của \(f\left(x\right)\)thì:

\(2x^2+3x+1=0\)

\(\Leftrightarrow2x^2+2x+x+1=0\)

\(\Leftrightarrow2x\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0-1\\2x=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x=\frac{-1}{2}\end{cases}}}\)

Vậy \(x=-1,x=\frac{-1}{2}\)là nghiệm của \(f\left(x\right)\)

Alicia
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 9 2021 lúc 20:48

a: Ta có: \(A=x^2+3x+4\)

\(=x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)