Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phambaotien
Xem chi tiết
phambaotien
14 tháng 3 2021 lúc 21:45

ai giúp tôi vs

 

Nguyễn Lê Phước Thịnh
15 tháng 3 2021 lúc 22:15

a) Xét ΔHMB và ΔKMC có 

HM=KM(gt)

\(\widehat{HMB}=\widehat{KMC}\)(hai góc đối đỉnh)

MB=MC(M là trung điểm của BC)

Do đó: ΔHMB=ΔKMC(c-g-c)

Suy ra: \(\widehat{BHM}=\widehat{CKM}\)(hai góc tương ứng)

mà \(\widehat{BHM}=90^0\)(gt)

nên \(\widehat{CKM}=90^0\)

hay CK⊥HM(đpcm)

Phạm Hải Yến
Xem chi tiết
Phạm Hải Yến
Xem chi tiết
Phạm Hải Yến
Xem chi tiết
Chau Minh
Xem chi tiết
Ninh Nguyễn Trúc Lam
Xem chi tiết
Victor Leo
Xem chi tiết
Lelemalin
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 0:19

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔBAC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

b) Xét ΔAMD và ΔCMH có 

MA=MC(gt)

\(\widehat{AMD}=\widehat{CMH}\)(hai góc đối đỉnh)

MD=MH(gt)

Do đó: ΔAMD=ΔCMH(c-g-c)

Suy ra: AD=HC(Hai cạnh tương ứng)

c) Ta có: ΔAMD=ΔCMH(cmt)

nên \(\widehat{MAD}=\widehat{MCH}\)(hai góc tương ứng)

mà hai góc này là hai góc ở vị trí so le trong

nên AD//HC(Dấu hiệu nhận biết hai đường thẳng song song)

hay AD//HB

Xét tứ giác ABHD có 

AD//BH(cmt)

AD=BH(=HC)

Do đó: ABHD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: AB//DH(Hai cạnh đối)

Lê Thiện
Xem chi tiết
肖战Daytoy_1005
13 tháng 4 2021 lúc 20:58

Tự vẽ hình nhé bạn:vv

a) Xét ∆MHC và ∆MKB:

\(\widehat{CMH}=\widehat{BMK}\) (2 góc đối đỉnh)

\(CM=MB\left(gt\right)\)

\(HM=MK\left(gt\right)\)

=> ∆MHC=∆MKB(c.g.c)

b) Vì ∆ABC vuông ở A có đường trung tuyến AM

\(\Rightarrow AM=\dfrac{1}{2}BC=MC=MB\)

=> ∆AMC cân tại M

=> MH vừa là đường cao vừa là đường trung tuyến của ∆AMC.

=> AH=CH

Mà theo câu a: ∆MHC=∆MKB 

=> CH=KB (2 cạnh tương ứng)

=> AH=KB

=> Đpcm

c) Xét ∆ABC có : AM và BH là 2 đường cao

=> I là trọng tâm của ∆ABC

Mà D là trung điểm của AB

=> CD là đường cao thứ 3 của ∆ABC

=> CD phải đi qua trọng tâm I

=> C, D, I thẳng hàng.

Nguyễn Lê Phước Thịnh
13 tháng 4 2021 lúc 22:24

a) Xét ΔMHC và ΔMKB có

MH=MK(gt)

\(\widehat{HMC}=\widehat{KMB}\)(hai góc đối đỉnh)

MC=MB(M là trung điểm của BC)

Do đó: ΔMHC=ΔMKB(c-g-c)

Nguyễn Lê Phước Thịnh
13 tháng 4 2021 lúc 22:25

b)

Ta có: MH\(\perp\)AC(gt)

AB\(\perp\)AC(ΔABC vuông tại A)

Do đó: MH//AB(Định lí 1 từ vuông góc tới song song)

Xét ΔABC có

M là trung điểm của BC(gt)

MH//AB(cmt)

Do đó: H là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)

Suy ra: AH=HC

mà CH=KB(ΔMHC=ΔMKB)

nên AH=BK(đpcm)