Cho tam giác ABC biết \(a=14cm,b=18cm,c=20cm\). Tính \(\widehat{A};\widehat{B};\widehat{C}\) ?
Cho tam giác ABC có ba cạnh AB = 14cm, AC = 20cm và BC = 18cm. Trên cạnh AB lấy điểm E sao cho AE = 10cm. Trên cạnh AC lấy điểm D sao cho AD = 7cm.
a/ Chứng minh tam giác ADE ~ tam giác ABC
b/ Tính DE
Hình bạn tự vẽ ạ.
a, Xét \(\Delta ADE\) và \(\Delta ABC\) có :
\(\dfrac{AD}{AB}=\dfrac{7}{14}=\dfrac{1}{2}\)
\(\dfrac{AE}{AC}=\dfrac{10}{20}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(=\dfrac{1}{2}\right)\)
Mà \(\widehat{A}:chung\)
\(\Rightarrow\Delta ADE\sim\Delta ABC\left(c-g-c\right)\)
b, Ta có : \(\Delta ADE\sim\Delta ABC\left(cmt\right)\)
\(\Rightarrow\dfrac{AD}{AB}=\dfrac{ED}{BC}\)
hay \(\dfrac{7}{14}=\dfrac{ED}{18}\)
\(\Rightarrow ED=\dfrac{7.18}{14}=9\left(cm\right)\)
Cho tam giác ABC có
a) AB=16cm BC=14cm góc b=60•.Tính các cạnh các góc còn lại và tính diện tích tam giác ABC
b) AB=16cm BC=14cm CA=24cm.Tính các góc và tính diện tích tam giác ABC
c) góc a=50• AB=20cm góc b=60•.Tính các cạnh các góc còn lại và tính diện tích tam giác ABC
Bạn kể thêm đường cao và đặt ẩn là làm ra
Giải tam giác ABC vuông tại A, biết rằng :
a) \(b=10cm,\widehat{C}=30^0\)
b) \(c=10cm,\widehat{C}=45^0\)
c) \(a=20cm,\widehat{B}=35^0\)
d) \(c=21cm,b=18cm\)
: Cho △ABC; AB = 14cm, AC = 21cm. AD là phân giác của A.Biết BD=8 cm. Độ dài cạnh BC là:
A. 15cm B. 18cm C. 20cm D 22cm
Cho tam giác ABC cân có AB=4cm, AC=8cm.Chu vi của tam giác ABC là:
A.16cm
B.12cm
C.20cm
D.18cm
Do tam giác ABC cân AB =4cm, AC = 8cm => BC = 8cm
Chu vi tam giác sẽ là: 4 +8 +8 = 20cm
Đáp án C
Các bạn muốn giải đáp thắc mắc hoặc kèm thêm toán thì có thể liên hệ nhé
Do tam giác ABC cân AB =4cm, AC = 8cm => BC = 8cm
Chu vi tam giác sẽ là: 4 +8 +8 = 20cm
Tính chu vi của các hình sau :
a) Hình tam giác có độ dài các cạch là 15cm,20cm,25cm
b) Hình tứ giác có độ dài các cạnh là 12cm , 14cm, 16cm , 18cm
a,chu vi của hình tam giác là :
15 + 20 + 25 = 60 ( cm )
đáp số : 60 cm
b, chu vi của hình tứ giác là :
12 + 14 + 16 + 18 = 60 ( cm )
đáp số : 60 cm
a) Chu vi của tam giác đó là
15+20+25=60 (cm)
Đáp số: 60 cm
b) Chu vi của tứ giác đó là
12+14+16+18=60 (cm)
Đáp số: 60cm
Giải tam giác ABC vuông tại A, biết rằng
a ) b = 10 cm , C ^ = 30 ° b ) c = 10 c m , C ^ = 45 ° c ) a = 20 cm , B ^ = 35 ° d ) c = 21 cm , b = 18 cm
(Lưu ý: ΔABC vuông tại A nên ∠ B + ∠ C = 90 °
Giải tam giác tức là đi tìm số đo các cạnh và các góc còn lại.)
a)
∠ B = 90 o - ∠ C = 90 ° - 30 ° = 60 °
c = b . t g C = 10 . t g 30 ° ≈ 5 , 77 ( c m )
b)
∠ B = 90 ° - ∠ C = 90 ° - 45 ° = 45 °
=> ΔABC cân => b = c = 10 (cm)
c)
∠ B = 90 o - ∠ C = 90 ° - 35 ° = 55 ° b = a sin B = 20 . sin 35 ° ≈ 11 , 47 ( c m ) c = a sin C = 20 . sin 55 ° ≈ 16 , 38 ( c m )
d)
(Ghi chú: Bạn nên sử dụng các kí hiệu cạnh là a, b, c (thay vì BC, AC, AB) để đồng bộ với đề bài đã cho.
Cách để nhớ các cạnh là: cạnh nào thiếu chữ cái nào thì chữ cái đó là kí hiệu của cạnh đó. Ví dụ: cạnh AB thiếu chữ cái C nên c là kí hiệu của cạnh.
hoặc cạnh đối diện với góc nào thì đó chính là kí hiệu của cạnh. Ví dụ: cạnh đối diện với góc B là cạnh b (chính là cạnh AC))
Tính các góc và các cạnh còn lại của tam giác ABC vuông tại A , biết :
a. AC = 10cm , góc C = 30 độ
b. BC = 20cm , góc B = 40 độ
c. AB = 21cm , AC = 18cm
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{B}=60^0\)
Xét ΔABC vuông tại A có
\(AB=AC\cdot\tan30^0\)
\(\Leftrightarrow AB=10\cdot\dfrac{\sqrt{3}}{3}=\dfrac{10\sqrt{3}}{3}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=10^2+\left(\dfrac{10\sqrt{3}}{3}\right)^2=\dfrac{400}{3}\)
hay \(BC=\dfrac{20\sqrt{3}}{3}\left(cm\right)\)
Tính các góc và các cạnh còn lại của tam giác ABC vuông tại A , biết :
a. BC = 20cm , góc B = 40 độ
b. AB = 21cm , AC = 18cm
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=50^0\)
Xét ΔABC vuông tại A có
\(AB=BC\cdot\sin\widehat{C}\)
\(\Leftrightarrow AB=20\cdot\sin50^0\)
hay \(AB\simeq15,32\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=20^2-15.32^2=165.2976\)
hay \(AC\simeq12,86\left(cm\right)\)