Cho hình chữ nhật ABCD . Trên tia đối của tia AD lấy điểm F sao cho AF=AB . Trên tia đối của tia AB lấy điểm E sao cho AE=AD. Gọi N là giao điểm của FC với AB và M là giao điểm của CE và AD . Chứng minh MD= BN
Cho hình chữ nhật ABCD. Trên tia đối tia AD Lấy điểm F sao cho AF=AB. Trên tia đối AB lấy điểm E sao cho AE=AD. N là giao điểm của FC và AB, M là giao điểm của EC và AD.
CMR: MD=BN
p/s: help me....giúp mình với, minh dang cần gấp
Cho hình chữ nhật ABCD . Trên tia đối của tia AD lấy điểm F sao cho AF=AB .Trên tia đối của tia AB lấy điểm E sao cho AE=AD. Gọi N là giao điểm của FC và AB và M là giao điểm của EC và AD.Chứng minh: MD=BN
Xét \(\Delta NBC\) và \(\Delta FDC\) có:
Góc B = Góc D (=90)
Góc BNC= Góc FCD ( cùng phụ với góc NCB)
=> \(\Delta NBC\approx\Delta FDC\) (gg)
=> \(\dfrac{NB}{BC}=\dfrac{DC}{FD}\) =>\(NB=\dfrac{DC.BC}{FD}=\dfrac{DC.BC}{AB+AD}\left(1\right)\)
Xét \(\Delta MDC\) và \(\Delta EBC\) có:
Góc D = Góc B (=90)
Góc ECB = Góc DMC ( cùng phụ góc MCD)
=> \(\Delta MDC\approx\Delta EBC\) ( gg)
=> \(\dfrac{MD}{DC}=\dfrac{BC}{EB}\) => \(MD=\dfrac{BC.DC}{EB}\) => \(MD=\dfrac{BC.DC}{AB+AD}\)(2) ( do các đoạn bằng )
Từ (1) và (2) => MD=BN(đpcm)
Cho hình thang cân ABCD (AB//CD). Trên nửa mặt phẳng bờ CD không chứa điểm B, vẽ tia Cx song song với AD. Trên tia Cx lấy điểm E sao cho CE=AD. M là giao điểm của AE và DC. Trên tia đối của tia MB lấy điểm F sao cho MF = MB. Chứng minh rằng: a) M là trung điểm của DC và AE b) Tứ giác ABEF là hình thang c) Tứ giác DCEF là hình thang cân
a) Xét tứ giác ADEC có
AD//EC(gt)
AD=EC(gt)
Do đó: ADEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Suy ra: Hai đường chéo AE và DC cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)
mà AE cắt DC tại M(gt)
nên M là trung điểm chung của DC và AE(đpcm)
b) Xét tứ giác ABEF có
M là trung điểm của đường chéo AE(cmt)
M là trung điểm của đường chéo BF(gt)
Do đó: ABEF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
c) Ta có: AB//DC(gt)
AB//FE(ABEF là hình bình hành)
Do đó: FE//DC(Định lí 3 từ vuông góc tới song song)
Xét ΔDMF và ΔCMB có
MF=MB(gt)
\(\widehat{DMF}=\widehat{CMB}\)(hai góc đối đỉnh)
MD=MC(M là trung điểm của DC)
Do đó: ΔDMF=ΔCMB(c-g-c)
Suy ra: DF=BC(hai cạnh tương ứng)
mà AD=EC(ADEC là hình bình hành)
và AD=BC(ABCD là hình thang cân)
nên DF=EC
Hình thang DCEF(DC//FE) có DF=EC(cmt)
nên DCEF là hình thang cân
Giúp mk với ạ.
Cho hình chữ nhật ABCD có AB=2.AD. Gọi E; I lần lượt là trung điểm của AB và CD. Nối D và E. Vẽ tia Dx sao cho Dx vuông góc với DE, và Dx cắt tia đối của tia CB tại M. Trên tia đối của tia CE lấy điểm K sao cho DM=EK. Gọi G là giao điểmcủa DK và EM.
Tính số đo \(\widehat{DBK}\) ?
Cho hình chữ nhật ABCD (AB<AD). Trên các cạnh
AD và BC lấn lượt lấy các điểm E và F sao cho AF = CF.
a) Chứng minh rằng: AF// CE.
b) Gọi O là giao điểm của AC và BD. Chứng minh rằng E đối xửng
với F qua O.
c) Qua C kẻ đường thẳng vuông góc với tia AF tại H. Chứng minh
răng BH vuông góc với DH
d) Biết CBH = 30°, tỉnh số đo của góc AÔH?
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Suy ra: AF//CE
Xét hình tứ giác đấy có:
`=>AE//// CF`
`AE=CF`
Có bốn cạnh như trên suy ra là hình bình hành.
`=>` `AF////CE`
Cho hình bình hành ABCD. Điểm E thuộc tia đối của AB, điểm F thuộc tia đối của CD sao cho AE=CF. Gọi M là giao điểm của AD và CE; N là giao điểm của AF và BC. Gọi O là giao điểm của MN và AC. Chứng minh: a) B, O, D thẳng hàng b) E, O, F thẳng hàng
bạn học đến phần nào rồi
đầu tiên CM được TgEMA =Tg FNC
=>AM=NC
=>TgOME=TgOCN
kẻ OB, OD
CM được TgOMD=TgONC
=>gócBON=gócDOM
=>Đpcm'''
có gi ko hiểu thì hỏi nhá
buồn ngủ quá
Cho hình bình hành ABCD, trên tia đối của tia AD lấy điểm E sao cho AE = AD. Gọi F là giao điểm AE và AB
a) Chứng minh tứ giác AEBC là hình bình hành
b) Chứng minh EF = FC
{AD // BCAD = BC AB = CDAB // CD
Vì AD // BC
⇒ AD // BE
Vì {AD = BCBE= BC
⇒ AD = BE
Tứ giác EADB có
{AD // BEAD = BE
⇒ Tứ giác EADB là hình bình hành (đpcm)
b, Vì tứ giác EADB là hình bình hành
⇒ AE // BD (1)
Vì {AB = CDDF = CD
⇒ AB = DF
Vì AB // CD
⇒ AB // DF
Tứ giác ABDF có
{AB = DFAB // DF
⇒ Tứ giác ABDF là hình bình hành
⇒ AF // BD (2)
Từ (1), (2) ⇒ E, A và F thẳng hàng (đpcm)
c, Vì tứ giác EADB là hình bình hành
⇒ AE = BD (3)
Vì tứ giác ABDF là hình bình hành
⇒ AF = BD (4)
Từ (3), (4) ⇒ AE = AF
Vì {AE = AFE, A, F thẳng hàng
⇒ A là trung điểm của EF
⇒ CA là đường trung tuyến của ΔCEF
Vì DC = DF
⇒ D là trung điểm của EF
⇒ ED là đường trung tuyến của ΔCEF
Vì BE = BC
⇒ B là trung điểm của EC
⇒ FB là đường trung tuyến của ΔCEF
Như vậy
{CA là đường trung tuyến của ΔCEF ED là đường trung tuyến của ΔCEFFB là đường trung tuyến của ΔCEF
Cho hình bình hành ABCD. Điểm E thuộc tia đối của tia AB, điểm F thuộc tia đối của tia CD sao cho AE = CF. Gọi M là giao điểm của AD và CE, N là giao điểm của AF và CB . Gọi O là giao điểm của MN và AC.CMR;
a, B , O , D thẳng hàng.
b, E , O , F thẳng hàng.
Hãy tích cho tui đi
Nếu bạn tích tui
Tui không tích lại đâu
THANKS
Cho hình bình hành ABCD. Điểm E thuộc tia đối của AB, điểm F thuộc tia đối của CD sao cho AE=CF. Gọi M là giao điểm của AD và CE; N là giao điểm của AF và BC. Gọi O là giao điểm của MN và AC. Chứng minh:
a) B, O, D thẳng hàng
b) E, O, F thẳng hàng
Các bạn ơi, bài này mình giải đc rồi nên các bạn ko cần giải nữa đâu nhé!