Mọi người giúp em 3 bài này với ạ! em đang cần gấp!!! Cảm ơn trước ạ.
Mọi người giúp em bài này với ạ, em đang cần gấp ạ, em cảm ơn nhiều ạ!!!!
Câu 2:
\(R1=R_{nt}-R2=9-6=3\Omega\)
\(=>R_{ss}=\dfrac{R1\cdot R2}{R1+R2}=\dfrac{3\cdot6}{3+6}=2\Omega\)
Chọn A
Mọi người giúp em bài này với ạ! Em đang cần gấp!! Cảm ơn nhiều ạ
nSO3=8/80=0,1(mol)
pthh: SO3 + H2O -> H2SO4
nH2SO4=nSO3=0,1(mol) => mH2SO4(tạo sau)= 0,1.98=9,8(g)
mH2SO4(tổng)= 100.9,8% + 9,8=19,6(g)
mddH2SO4(sau)=8+100=108(g)
=>C%ddH2SO4(sau)= (19,6/108).100=18,148%
Mọi người ơi, giúp em nhanh bài này với ạ, em đang cần gấp lắm ạ. Em cảm ơn rất nhiều ạ!!!!!
Mọi người ơi, giúp em bài này vớ ạ, em đang cần gấp lắm ạ, cảm ơn mng rất rất nhiều ạ.
Mọi người giải giúp em bài này với ạ. Em cần gấp lắm ạ. Cảm ơn mọi người nhiều
vẽ lại mạch ta có RAM//RMN//RNB
đặt theo thứ tự 3 R là a,b,c
ta có a+b+c=1 (1)
điện trở tương đương \(\dfrac{1}{R_{td}}=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) \(\Rightarrow I=\dfrac{U}{R_{td}}=9.\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) với a,b,c>0
áp dụng bất đẳng thức cô si cho \(\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c}\) \(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{3}{\sqrt[3]{abc}}\ge\dfrac{3}{\left(\dfrac{a+b+c}{3}\right)}=\dfrac{9}{a+b+c}=9\)
\(\Leftrightarrow9\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge81\Leftrightarrow I\ge81\) I min =81 ( úi dồi ôi O_o hơi to mà vẫn đúng đá nhỉ)
dấu ''='' xảy ra \(\Leftrightarrow a=b=c\left(2\right)\)
từ (1) (2) \(\Rightarrow a=b=c=\dfrac{1}{3}\left(\Omega\right)\)
vậy ... (V LUN MẤT CẢ BUỔI TỐI R BÀI KHÓ QUÁ EM ĐANG ÔN HSG À )
em ơi chụp cả cái mạch điện a xem nào sao chụp nó bị mất r
em đang cần gấp câu này lắm ạ mọi người giúp em với. em cảm ơn!
Do vai trò của 3 biến là như nhau, không mất tính tổng quát giả sử \(x>y>z\)
Ta có: \(x-z=\left(x-y\right)+\left(y-z\right)\)
Đặt \(\left\{{}\begin{matrix}x-y=a>0\\y-z=b>0\end{matrix}\right.\)
Do \(x;z\in\left[0;2\right]\Rightarrow x-z\le2\) hay \(a+b\le2\)
Ta có:
\(P=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2+\dfrac{1}{\left(a+b\right)^2}\ge\dfrac{1}{2}\left(\dfrac{4}{a+b}\right)^2+\dfrac{1}{\left(a+b\right)^2}\)
\(P\ge\dfrac{9}{\left(a+b\right)^2}\ge\dfrac{9}{2^2}=\dfrac{9}{4}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=b\\a+b=2\\\end{matrix}\right.\) \(\Rightarrow a=b=1\) hay \(\left(x;y;z\right)=\left(0;1;2\right)\) và các hoán vị
Mọi người ơi giúp e giải bài này với ạ, huheoo e cần gấp lắm!! Thầy e cho nhìu bài tập quá làm ko kịp!!Em cảm ơn trước ạ.
Coá ai ko giúp em bài này với ạ. Em đang cần gấp trước 1h00 . Em xin cảm ơn
Có ai ko giúp em với . Em đang cần rất gấp trước 3h00 ạ . Em mong mọi người giúp em . Em xin cảm ơn
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\)
\(\sqrt{x^2-x-2}-\sqrt{x-2}=0\\ \Leftrightarrow\sqrt{x^2-x-2}=\sqrt{x-2}\\ \Leftrightarrow x^2-x-2=x-2\\ \Leftrightarrow x^2-2x=0\\ \Leftrightarrow x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)
\(a,ĐK:x\ge2\\ PT\Leftrightarrow x^2-x-2=x-2\\ \Leftrightarrow x^2-2x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=0\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=2\\ b,ĐK:\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\\ PT\Leftrightarrow\sqrt{x^2-1}=x^2-1\\ \Leftrightarrow x^2-1=\left(x^2-1\right)^2\\ \Leftrightarrow\left(x^2-1\right)\left(x^2-1-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-1\left(tm\right)\\x=\sqrt{2}\left(tm\right)\\x=-\sqrt{2}\left(tm\right)\end{matrix}\right.\)
\(c,ĐK:\left[{}\begin{matrix}x\le-2\\x\ge1\end{matrix}\right.\\ PT\Leftrightarrow\sqrt{x^2-x}=-\sqrt{x^2+x-2}\\ \Leftrightarrow x^2-x=x^2+x-2\\ \Leftrightarrow2x=2\\ \Leftrightarrow x=1\left(tm\right)\)
\(d,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{\left(x^2-1\right)^2}=x-1\\ \Leftrightarrow\left|x^2-1\right|=x-1\\ \Leftrightarrow\left[{}\begin{matrix}x^2-1=x-1\left(x\le-1;x\ge1\right)\\x^2-1=1-x\left(-1< x< 1\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=0\left(tm\right)\\x=1\left(tm\right)\end{matrix}\right.\\\left[{}\begin{matrix}x=1\left(ktm\right)\\x=-2\left(ktm\right)\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
\(e,PT\Leftrightarrow\left|x+2\right|+\left|x-4\right|=0\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=4\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
\(g,\Leftrightarrow x\in\varnothing\left(\sqrt{x-2}+\sqrt{x-3}\ge0>-5\right)\\ f,\Leftrightarrow\left|x-1\right|+\left|x-3\right|=1\\ \Leftrightarrow\left[{}\begin{matrix}1-x+3-x=1\left(x< 1\right)\\x-1+3-x=1\left(1\le x< 3\right)\\x-1+x-3=1\left(x\ge3\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\left(ktm\right)\\0x=-1\left(ktm\right)\\x=\dfrac{5}{2}\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow x\in\varnothing\)