tìm X biết :
a) ( X - 3)( X - 2) <0
b) 3X + x2 = 0
Ai giúp em với
A=(x/x+3 - 2/x-3 + x^2-1/9-x^2):(2- x+5/3+x)
a;rút gọn biểu thức A
b;tìm A biết |x|=1
c;tìm x biết a=1/2
d; tìm các giá trị thuộc z để a thuộc giá trị nguyên
a) \(A=\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}+\dfrac{x^2-1}{9-x^2}\right):\left(2-\dfrac{x+5}{x+3}\right)\) (ĐK: \(x\ne\pm3\))
\(A=\left[\dfrac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x^2-1}{\left(x+3\right)\left(x-3\right)}\right]:\left(2+\dfrac{x+5}{x+3}\right)\)
\(A=\dfrac{x^2-3x-2x-6-x^2+1}{\left(x+3\right)\left(x-3\right)}:\dfrac{2\left(x+3\right)-\left(x+5\right)}{x+3}\)
\(A=\dfrac{-5x-5}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{x+3}{x+1}\)
\(A=\dfrac{-5\left(x+1\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)\left(x+1\right)}\)
\(A=\dfrac{-5}{x-3}\)
b) Ta có: \(\left|x\right|=1\)
TH1: \(\left|x\right|=-x\) với \(x< 0\)
Pt trở thành:
\(-x=1\) (ĐK: \(x< 0\))
\(\Leftrightarrow x=-1\left(tm\right)\)
Thay \(x=-1\) vào A ta có:
\(A=\dfrac{-5}{x-3}=\dfrac{-5}{-1-3}=\dfrac{5}{4}\)
TH2: \(\left|x\right|=x\) với \(x\ge0\)
Pt trở thành:
\(x=1\left(tm\right)\) (ĐK: \(x\ge0\))
Thay \(x=1\) vào A ta có:
\(A=\dfrac{-5}{x-3}=\dfrac{-5}{1-2}=\dfrac{5}{2}\)
c) \(A=\dfrac{1}{2}\) khi:
\(\dfrac{-5}{x-3}=\dfrac{1}{2}\)
\(\Leftrightarrow-10=x-3\)
\(\Leftrightarrow x=-10+3\)
\(\Leftrightarrow x=-7\left(tm\right)\)
d) \(A\) nguyên khi:
\(\dfrac{-5}{x-3}\) nguyên
\(\Rightarrow x-3\inƯ\left(-5\right)\)
\(\Rightarrow x\in\left\{8;-2;2;4\right\}\)
a: \(A=\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}+\dfrac{x^2-1}{9-x^2}\right):\left(2-\dfrac{x+5}{x+3}\right)\)
\(=\dfrac{x\left(x-3\right)-2\left(x+3\right)-x^2+1}{\left(x-3\right)\left(x+3\right)}:\dfrac{2x+6-x-5}{x+3}\)
\(=\dfrac{x^2-3x-2x-6-x^2+1}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x+1}\)
\(=\dfrac{-5x-5}{\left(x-3\right)}\cdot\dfrac{1}{x+1}=\dfrac{-5}{x-3}\)
b: |x|=1
=>x=-1(loại) hoặc x=1(nhận)
Khi x=1 thì \(A=\dfrac{-5}{1-3}=-\dfrac{5}{-2}=\dfrac{5}{2}\)
c: A=1/2
=>x-3=-10
=>x=-7
d: A nguyên
=>-5 chia hết cho x-3
=>x-3 thuộc {1;-1;5;-5}
=>x thuộc {4;2;8;-2}
Cho: \(A=\dfrac{3\sqrt{x}}{-x-5\sqrt{x}-1}\)
a) Tìm x biết \(A=\dfrac{2}{3}\)
b) Tìm A biết \(x=7-2\sqrt{6}\)
c) Tìm GTNN của A
b: Thay \(x=7-2\sqrt{6}\) vào A, ta được:
\(A=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-7+2\sqrt{6}-5\left(\sqrt{6}+1\right)-1}\)
\(=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-8+2\sqrt{6}-5\sqrt{6}-5}\)
\(=\dfrac{-3\sqrt{6}+3}{13+3\sqrt{6}}=\dfrac{93-48\sqrt{6}}{115}\)
1. Cho biểu thức A = |3x -1| - (x -7)
a) Rút gọn A b) Tính A biết x= 3 ; x= 0; x= -2 c)Tìm x biết |A| = 8
2. Tìm x biết: a) | x -2| = | 4-x| b) ( | 2x -1|-3) .(-2) + (-5) = 6
help với mik cần gấp
Bài 2:
a) Ta có: \(\left|x-2\right|=\left|4-x\right|\)
\(\Leftrightarrow x-2=4-x\)
\(\Leftrightarrow2x=6\)
hay x=3
b) Ta có: \(\left(\left|2x-1\right|-3\right)\cdot\left(-2\right)+\left(-5\right)=6\)
\(\Leftrightarrow\left(\left|2x-1\right|-3\right)\cdot\left(-2\right)=11\)
\(\Leftrightarrow\left|2x-1\right|-3=\dfrac{-11}{2}\)
\(\Leftrightarrow\left|2x-1\right|=\dfrac{-11}{2}+\dfrac{6}{2}=\dfrac{-5}{2}\)(Vô lý)
Bài 13: Tìm x biết: a) (x-2)(x-3)-D0. b) (x-3)(x-4)-0. c) (x-7)(6-x)=0. d) (x-3)(x-13)=0. The Bài 14: Tìm x biết: a) (12-x)(2-x)=0. b) (x-33)(11-x)=0. c) (21-x)(12-x)=0. d) (50-x)(x-150) =0. Bài 15: Tìm x biết: a) 2x +x = 45. b) 2x +7x = 918. c) 2x+3x 60+5. d) 11x+22x 33.2.
bài 1 tìm các số nguyên x,y biết a)2^x=8
b) 3^4=27
c)(-1,2).x=(-1,2)^4
d)x:(-3/4)=(-3/4)^2
e)(x+1)^3=-125
f)(x-2)^3=64
bài 2 tìm các số nguyên x,y biết
a)(x-1,2)^2=4
d)(x-1,5)^2=9
e)(x-2)^3=64
a) \(2^x=8\)
⇔ \(2^x=2^3\)
⇒ \(x=3\)
b) \(3^x=27\)
⇔ \(3^x=3^3\)
⇒ \(x=3\)
c) \(\left(-\dfrac{1}{2}\right)x=\left(-\dfrac{1}{2}\right)^4\)
⇔ \(x=\left(-\dfrac{1}{2}\right)^4\div\left(-\dfrac{1}{2}\right)\)
⇔ \(x=\left(-\dfrac{1}{2}\right)^3\)
d) \(x\div\left(-\dfrac{3}{4}\right)=\left(-\dfrac{3}{4}\right)^2\)
⇔ \(x=\left(-\dfrac{3}{4}\right)^2\cdot\left(-\dfrac{3}{4}\right)\)
⇔ \(x=\left(-\dfrac{3}{4}\right)^3=-\dfrac{27}{64}\)
d) \(\left(x+1\right)^3=-125\)
⇔ \(\left(x+1\right)^3=\left(-5\right)^3\)
⇔ \(x+1=-5\)
⇔ \(x=-5-1=-6\)
2:
a: (x-1,2)^2=4
=>x-1,2=2 hoặc x-1,2=-2
=>x=3,2(loại) hoặc x=-0,8(loại)
b: (x-1,5)^2=9
=>x-1,5=3 hoặc x-1,5=-3
=>x=-1,5(loại) hoặc x=4,5(loại)
c: (x-2)^3=64
=>(x-2)^3=4^3
=>x-2=4
=>x=6(nhận)
1/Tìm x ,y biết
a/(x-1)*(x-2)=-5
2/ tìm x biết
a/2*(x-1)-3*(x-2)=-5-2*(x-3)
b/x*(x-2) < 0c
c/(x-3)*(2x+6)*(3x-15)=0
1/a)Ta có -5=-1*5=-5*1
Sau đó bn lập bảng rồi dùng ước bội để tính nhé
Tk mình nha bn!
1.tìm số nguyên x biết rằngtoongr của ba số:3,-2vaf x bằng5
2.cho a thuộc z tìm số nguyên x biết:
a)a+x=5; b) a-x=2
3.cho a,b thuộc z tìm số nguyên x biết:
a) a+x=b ; b)a-x=b
1.3+(-2)+x=5
-1+x=5
x=5-(-1)
x=6
Nhớ tick cho mình nha
a) Tìm aba biết ab* aba= abab
b) Tìm ab biết a*b*ab= bbb
c) Chứng minh rằng 1+2+2^2+2^3+.....+2^2006 chia hết cho 7
d) Tìm x biết 3^x+3^x+1+3^x+2=1053
Câu 3: Tìm x ∈ N, biết:
a) 3 x . 3 = 243 b) 2 x . 162 = 1024 c) 64.4x = 168 d) 2 x = 16Câu 4 : Tìm x, biết. a) 2 x .4 = 128 b) (2x + 1)3 = 125 c) 2x – 2 6 = 6 d) 49.7x = 24013:
a: 3^x*3=243
=>3^x=81
=>x=4
b; 2^x*16^2=1024
=>2^x=4
=>x=2
c: 64*4^x=16^8
=>4^x=4^16/4^3=4^13
=>x=13
d: 2^x=16
=>2^x=2^4
=>x=4
Giải đầy đủ hộ mình nhé :
Bài 1: Tìm x,y,;biết
a, x+y=2
b,y+z=3
c,z+x=-5
Bài 2 : Tìm x,y thuộc Z, biết (x-3).(y+2)=-5
Bài 3 : Tìm a thuộc Z, biết a.(a+2)<0
Bài 4 : Tìm x thuộc Z, sao cho (x2 -4).(x2-10)<0
Bài 5 Tìm x thuộc Z, biết (x2-1).(x2-4)<0
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2