Vẽ đồ thị hàm số :
\(y=\left\{{}\begin{matrix}2x-1;\left(x\ge1\right)\\\dfrac{1}{2}x+1;\left(x< 1\right)\end{matrix}\right.\)
Lập bảng biến thiên và vẽ đồ thị hàm số
a) y = |x-1|+|2x-4|
b) y = \(\left\{{}\begin{matrix}2x-1,x\ge1\\-x+2,x< 1\end{matrix}\right.\)
Vẽ đồ thị các hàm số :
a. \(y=\left\{{}\begin{matrix}2x;\left(x\ge0\right)\\-\dfrac{1}{2}x;\left(x< 0\right)\end{matrix}\right.\)
b. \(y=\left\{{}\begin{matrix}x+1;\left(x\ge1\right)\\-2x+4;\left(x< 1\right)\end{matrix}\right.\)
bài1
a) hãy xác định hàm số y=ax\(^2\) bt rằng đồ thị của nó đi qua điểm \(M(-2;2)\)
b\()\) vẽ đồ thị hàm số y= \(\dfrac{1}{2}x^2\)
bài 2
a)\(\left\{{}\begin{matrix}4x+5y=3\\x-3y=5\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{4}{5}\\\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{5}\end{matrix}\right.\)
giải hộ tui với
Bài 1:
a: Thay x=-2 và y=2 vào hàm số, ta được:
4a=2
hay a=1/2
Bài 2:
a: \(\Leftrightarrow\left\{{}\begin{matrix}4x+5y=3\\4x-12y=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}17y=-17\\x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\3y=x-5=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}=1\\\dfrac{1}{x}-\dfrac{1}{y}=\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\\dfrac{1}{y}=\dfrac{1}{2}-\dfrac{1}{5}=\dfrac{3}{10}\end{matrix}\right.\Leftrightarrow\left(x,y\right)=\left(2;\dfrac{10}{3}\right)\)
Vẽ đồ thị hàm số
\(y=\left\{{}\begin{matrix}-2x+3,x>2\\-1,-3\le x\le2\\x+2,x< -3\end{matrix}\right.\)
Giúp giúp giúp, please
i need it know
c2
a/ ko sử dụng mt cầm tay, giải hpt
\(\left\{{}\begin{matrix}x+2y=4\\3x-y=5\end{matrix}\right.\)
b/ cho hàm số \(y=-\dfrac{1}{2}x^2\)có đồ thị (P)
- vẽ đồ thị (P) của hàm số
- cho đường thẳng \(y=mx+n\left(\Delta\right)\). tìm m.n để đường thẳng (\(\Delta\)) song song vs đường thẳng \(y=-2x+5\left(d\right)\) và có duy nhất 1 điểm chung vs đồ thị (P)
b: Vì (Δ)//(d) nên m=-2
Vậy: (Δ): y=-2x+n
Phương trình hoành độ giao điểm là
\(-\dfrac{1}{2}x^2+x-n=0\)
\(\text{Δ}=1^2-4\cdot\dfrac{-1}{2}\cdot\left(-n\right)=1-2n\)
Để (d) tiếp xúc với (P) thì -2n+1=0
hay n=1/2
lập bảng biến thiên và vẽ đồ thị hàm số
a) y=\(\left\{{}\begin{matrix}\dfrac{1}{2}\left(x+3\right)^2\left(x\le1\right)\\2\left(x>1\right)\end{matrix}\right.\)
I. Cho hàm số y = x3 - 2x2 + x - 1 có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị hàm số (C), biết rằng đồ thị này song song với đường thẳng y = -5x + 17.
II. Xét tính liên tục của hàm số sau:
\(\left\{{}\begin{matrix}\dfrac{-x^2+2x+1}{-x-1}|khix=-1\\3-2x|khix=1\end{matrix}\right.\)tại x0 = 1
III. Cho hình chóp S.ABCD có SA \(\perp\) (ABCD), ABCD là hình chữ nhật. Chứng minh rằng BC \(\perp\) (SAC).
Giải giúp mình nhé. Mai mình thi HKII rồi. Cảm ơn các bạn rất nhiều.
I. Xét tính liên tục của hàm số f (x) =\(\left\{{}\begin{matrix}\dfrac{x^2-3x+2}{x-1}|khix\ne1\\1-2x|khix=1\end{matrix}\right.\)tại điểm x0 = 1
II. Cho hàm số y = -x3 - x2 - 6x + 1 có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị (C), biết rằng tiếp tuyến đó song song với đường thẳng
y = -6x + 17
III. Cho hình chóp S.ABCD có SA \(\perp\) (ABCD). Đáy ABCD là hình thang vuông tại A. Chứng minh rằng: BC \(\perp\) (SAB)
IV. Cho tứ diện ABCD có BCD là tam giác đều cạnh bằng a. AB vuông góc với mặt phẳng (BCD) và AB = \(\dfrac{a}{2}\). Tính khoảng cách từ D đến mp(ABC)
giải giúp mình nhé. cảm ơn các bạn
I. Hàm số xác định trên D = R.
+) \(\lim\limits f\left(x\right)_{x\rightarrow1}=\lim\limits_{x\rightarrow1}\dfrac{x^2-3x+2}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\dfrac{\left(x-2\right)\left(x-1\right)}{\left(x-1\right)}\)
\(=\lim\limits_{x\rightarrow1}\left(x-2\right)\)
\(=-1\)
+) \(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\left(1-2x\right)=-1\)
=> Hàm số liên tục tại x0 = 1
II. Gọi phương trình tiếp tuyến tại N(x0; y0) là:
y = y'(x0)(x - x0) + y0
y = -x3 - x2 - 6x + 1
=> y' = -3x2 - 2x + 6
Vì tiếp tuyến song song với đường thẳng y = -6x + 17 => y'(x0) = 6
<=> -3x2 - 2x + 6 = 6
<=> -3x2 - 2x = 0
<=> -x(3x + 2) = 0
<=> x = 0 hoặc x = -2/3
Trường hợp 1: x0 = 0 => y0 = 0
=> y'(x0) = 6
=> Phương trình tiếp tuyến: y = 6(x - 0) + 1
<=> y = 6x + 1
Trường hợp 2: x0 = -2/3 => y0 = 37/9
=> y'(x0) = 9
=> Phương trình tiếp tuyến: y = 9(x + 2/3) + 37/9
<=> y = 9x + 91/9
Câu 1:
1) Giải hệ pt \(\left\{{}\begin{matrix}5x-3y=7\\-2x+3y=8\end{matrix}\right.\)
2) Giải pt:
a. \(x^2-12x+27=0\)
b. \(x^4-6x^2-7\)
Câu 2:
1) Cho hàm số \(y=\dfrac{1}{2}x^2\) có đồ thị là (P). Vẽ đồ thị (P) trên mặt phẳng tọa độ Oxy
2) Tìm điểm M thuộc đồ thị (P) có tung độ và hoành độ bằng nhau
Câu 3:
1) Với giá trị nào của m thì phương trình \(x^2-5x+2m=0\) có hai nghiệm phân biệt ?
2) Cho x1, x2 là hai nghiệm của phương trình \(x^2-2x-3=0\). Tính giá trị của biểu thức \(P=\left(x_1\right)^3.x_2+x_1.\left(x_2\right)^3\)
Câu 1:
2)
a) Ta có: \(x^2-12x+27=0\)
\(\Leftrightarrow x^2-9x-3x+27=0\)
\(\Leftrightarrow x\left(x-9\right)-3\left(x-9\right)=0\)
\(\Leftrightarrow\left(x-9\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-9=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=3\end{matrix}\right.\)
Vậy: S={9;3}
Câu 1:
1) Ta có: \(\left\{{}\begin{matrix}5x-3y=7\\-2x+3y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=15\\5x-3y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\3y=5x-7=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=8\end{matrix}\right.\)
Vậy: Hệ phương trình có nghiệm duy nhất là (x,y)=(5;8)