Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tùng Chiii
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2023 lúc 23:24

d:

ĐKXĐ: y<>0; x<>0; y<>2

 \(\dfrac{4}{x}+\dfrac{2}{y}=1\)

=>\(\dfrac{4y}{xy}+\dfrac{2x}{xy}=1\)

=>2x+4y=xy

=>x(2-y)=-4y

=>x(y-2)=4y

=>\(x=\dfrac{4y}{y-2}\)

mà x,y nguyên

nên \(4y⋮y-2\)

\(\Leftrightarrow4y-8+8⋮y-2\)

=>\(y-2\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

=>\(y\in\left\{3;1;4;6;-2;10;-6\right\}\)

=>\(x\in\left\{12;-4;8;6;2;5;3\right\}\)

e: 

ĐKXĐ: x<>0; y<>0; y<>3

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{3}\)

=>\(\dfrac{x+y}{xy}=\dfrac{1}{3}\)

=>3x+3y=xy

=>x(3-y)=-3y

=>\(x=\dfrac{3y}{y-3}\)

mà x,y nguyên

nên \(3y⋮y-3\)

=>\(3y-9+9⋮y-3\)

=>\(y-3\in\left\{1;-1;3;-3;9;-9\right\}\)

=>\(y\in\left\{4;2;6;12;-6\right\}\)

=>\(x\in\left\{12;-6;6;4;2\right\}\)

Ha-yul
Xem chi tiết
Nguyễn Huy Tú
28 tháng 1 2022 lúc 19:27

a, \(\dfrac{x}{2}=-\dfrac{5}{y}\Rightarrow xy=-10\Rightarrow x;y\inƯ\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

x1-12-25-510-10
y-1010-55-22-11

 

c, \(\dfrac{3}{x-1}=y+1\Rightarrow\left(y+1\right)\left(x-1\right)=3\Rightarrow x-1;y+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

x - 11-13-3
y + 13-31-1
x204-2
y2-40-2

 

Nguyễn Lê Phước Thịnh
28 tháng 1 2022 lúc 20:25

b: =>xy=12

\(\Leftrightarrow\left(x,y\right)\in\left\{\left(12;1\right);\left(6;2\right);\left(4;3\right)\right\}\)

Xem chi tiết
Earth-K-391
Xem chi tiết
Earth-K-391
21 tháng 9 2021 lúc 21:00

#%&$@«!?  ☺

ANH HOÀNG
Xem chi tiết
Lấp La Lấp Lánh
28 tháng 9 2021 lúc 12:54

a) \(\left|3x-\dfrac{1}{2}\right|+\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|=0\)

Do \(\left|3x-\dfrac{1}{2}\right|,\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|\ge0\forall x,y\)

\(\Rightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{4}y+\dfrac{3}{5}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{12}{5}\end{matrix}\right.\)

b) \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|+\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\le0\)

Do \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|,\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\ge0\forall x,y\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x+\dfrac{1}{9}=0\\\dfrac{5}{7}y-\dfrac{1}{2}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{27}\\y=\dfrac{7}{10}\end{matrix}\right.\)

Phạm Trịnh Ca Thương
Xem chi tiết
Nguyễn Huy Tú
11 tháng 2 2022 lúc 12:23

b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)

Đặt \(x=15k;y=20k;z=24k\)

Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)

Nguyễn Khánh Công
11 tháng 2 2022 lúc 12:22

lk

Nguyễn Huy Tú
11 tháng 2 2022 lúc 12:31

a, \(\dfrac{x}{7}-\dfrac{1}{2}=\dfrac{y}{y+1}\Leftrightarrow\dfrac{2x-7}{14}=\dfrac{y}{y+1}\Rightarrow\left(2x-7\right)\left(y+1\right)=14y\)

\(\Leftrightarrow2xy+2x-7y-7=14y\Leftrightarrow2xy+2x-21y-7=0\)

\(\Leftrightarrow2x\left(y+1\right)-21\left(y+1\right)+14=0\Leftrightarrow\left(2x-21\right)\left(y+1\right)=-14\)

\(\Rightarrow2x-21;y+1\inƯ\left(-14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)

2x - 21 1 -1 2 -2 7 -7 14 -14
y + 1 -14 14 -7 7 -2 2 -1 1
x 11 10 loại loại 14 7 loại loại
y -15 13 loại loại -3 1 loại loại

 

Thanh Tu Nguyen
Xem chi tiết
Nguyễn thành Đạt
28 tháng 9 2023 lúc 21:58

\(ĐKXĐ:xy\ne0\)

\(x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}=4\)

Áp dụng BĐT cô-si ta có : \(x^2+\dfrac{1}{x^2}\ge2.\sqrt{x^2.\dfrac{1}{x^2}}=2\)

Tương tự : \(y^2+\dfrac{1}{y^2}\ge2.\sqrt{y^2.\dfrac{1}{y^2}}=2\)

Do đó : \(x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge4\)

Dấu bằng xảy ra khi : \(\Leftrightarrow x^2=\dfrac{1}{x^2};y^2=\dfrac{1}{y^2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\pm1\\y=\pm1\end{matrix}\right.\)

Vậy.........

Nezuko Kamado
Xem chi tiết
Nezuko Kamado
31 tháng 10 2021 lúc 7:37

Mn ơi giúp mk với , please !!!

hưng phúc
31 tháng 10 2021 lúc 7:48

1. Ta có: \(\dfrac{x}{-7}=\dfrac{y}{4}\Rightarrow\dfrac{2x}{-14}=\dfrac{3y}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x-3y}{-14-12}=\dfrac{-78}{-26}=3\)

=> \(\left\{{}\begin{matrix}x=-21\\y=12\end{matrix}\right.\)

2. Ta có:

\(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)

\(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)

=> \(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)

=> \(\left\{{}\begin{matrix}x=-27\\y=-21\\z=-9\end{matrix}\right.\)

bảo bảo
Xem chi tiết

\(\dfrac{2}{5}\) x y : \(\dfrac{7}{4}\) = \(\dfrac{7}{8}\)

\(\dfrac{2}{5}\) x y = \(\dfrac{7}{8}\) x \(\dfrac{7}{4}\)

 \(\dfrac{2}{5}\) x y = \(\dfrac{49}{32}\)

         y = \(\dfrac{49}{32}\) : \(\dfrac{2}{5}\)

         y = \(\dfrac{245}{64}\)

2\(\dfrac{2}{5}\): y x 1\(\dfrac{1}{4}\) = 2\(\dfrac{3}{5}\)

\(\dfrac{12}{5}\): y x \(\dfrac{5}{4}\) = \(\dfrac{13}{5}\)

\(\dfrac{12}{5}\): y        = \(\dfrac{13}{5}\)\(\dfrac{5}{4}\)

 \(\dfrac{12}{5}\): y = \(\dfrac{52}{25}\)

        y = \(\dfrac{12}{5}\)\(\dfrac{52}{25}\)

        y = \(\dfrac{15}{13}\)

 

\(\dfrac{12}{5}\) - 1\(\dfrac{2}{5}\) \(\times\) y = 1\(\dfrac{1}{4}\)

 \(\dfrac{12}{5}\) - \(\dfrac{7}{5}\) \(\times\) y  = \(\dfrac{5}{4}\)

           \(\dfrac{7}{5}\) \(\times\) y  = \(\dfrac{12}{5}\) - \(\dfrac{5}{4}\)

            \(\dfrac{7}{5}\) \(\times\) y = \(\dfrac{23}{20}\)

                   y = \(\dfrac{23}{20}\) : \(\dfrac{7}{5}\)

                   y = \(\dfrac{23}{28}\)

Nguyễn Minh An
Xem chi tiết
ILoveMath
20 tháng 8 2021 lúc 8:20

1) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{x+y}{5+7}=\dfrac{48}{12}=4\)

\(\dfrac{x}{5}=4\Rightarrow x=20\\ \dfrac{y}{7}=4\Rightarrow y=28\)

2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{4}=\dfrac{y}{-7}=\dfrac{x-y}{4+7}=\dfrac{33}{11}=3\)

\(\dfrac{x}{4}=3\Rightarrow x=12\\ \dfrac{y}{-7}=3\Rightarrow y=-21\)