A=1/21+1/28+1/36+1/45+....+1/210
A=1/21+1/28+1/36+1/45+....+1/210
\(A=\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+...+\dfrac{1}{210}\)
\(2.\left(\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+...+\dfrac{1}{420}\right)\)
\(2.\left(\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+...+\dfrac{1}{20.21}\right)\)
\(2.\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+...\dfrac{1}{20}+\dfrac{1}{21}\right)\)
\(=2.\left(\dfrac{1}{6}-\dfrac{1}{21}\right)=\dfrac{5}{21}\)
A = \(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+...+\dfrac{1}{210}\)
A = \(\dfrac{2}{42}+\dfrac{2}{56}+\dfrac{2}{72}+\dfrac{2}{90}+...+\dfrac{2}{210}\)
A = \(\dfrac{2}{6.7}+\dfrac{2}{7.8}+\dfrac{2}{8.9}+\dfrac{2}{9.10}+...+\dfrac{2}{14.15}\)
A = \(2.\left(\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+...+\dfrac{1}{14.15}\right)\)
A = \(2.\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+...+\dfrac{1}{14}-\dfrac{1}{15}\right)\)
A = \(2.\left(\dfrac{1}{6}-\dfrac{1}{15}\right)\)
A = \(2.\dfrac{1}{10}\)
A = \(\dfrac{2}{10}\)
A = \(\dfrac{1}{5}\)
sorry, mik làm lộn
Làm lại nha:
A = \(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+...+\dfrac{1}{210}\)
A = \(\dfrac{2}{42}+\dfrac{2}{56}+\dfrac{2}{72}+\dfrac{2}{90}+...+\dfrac{2}{420}\)
A = \(2.\left(\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+...+\dfrac{1}{420}\right)\)
A = \(2.\left(\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+...+\dfrac{1}{20.21}\right)\)
A = \(2.\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+...+\dfrac{1}{20}-\dfrac{1}{21}\right)\)
A = \(2.\left(\dfrac{1}{6}-\dfrac{1}{21}\right)\)
A = \(2.\dfrac{5}{42}\)
A = \(\dfrac{5}{21}\)
Tính:\(A=\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+...+\dfrac{1}{210}\)
Huhu giúp mik gấp nhé
Trưa mik thi rồi
Á huhu
Ta có:
\(A=\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{1}{210}\)
=> \(\dfrac{1}{2}A=\dfrac{1}{2}\left(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{1}{210}\right)\text{}\)
\(=\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+...+\dfrac{1}{420}\)
\(=\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+...+\dfrac{1}{20.21}\)
\(=\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+...+\dfrac{1}{20}-\dfrac{1}{21}\)
\(=\dfrac{1}{6}-\dfrac{1}{21}\)
\(=\dfrac{5}{42}\)
Vậy \(A=\dfrac{5}{42}\)
A= 1/15 + 1/21 + 1/28 + 1/36 + 1/45 + 1/55
A=1+1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45
Lời giải:
$\frac{A}{2}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}$
$=\frac{2-1}{1\times 2}+\frac{3-2}{2\times 3}+\frac{4-3}{3\times 4}+\frac{5-4}{4\times 5}+\frac{6-5}{5\times 6}+\frac{7-6}{6\times 7}+\frac{9-8}{8\times 9}+\frac{10-9}{9\times 10}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}$
$=1-\frac{1}{9}=\frac{8}{9}$
$\Rightarrow A=2\times \frac{8}{9}=\frac{16}{9}$
tính A = 1/15+1/21+1/28+1/36+1/45+1/55+1/66
A= 1/3 + 1/6 + 1/10 + 1/15 + 1/21 +1/28 + 1/36 +1/45 + 1/55
\(A=\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+\dfrac{1}{55}\)
\(A=2\times\dfrac{1}{2}\times\left(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+\dfrac{1}{55}\right)\)
\(A=2\times\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}\right)\)
\(A=2\times\left(\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+...+\dfrac{1}{9\times10}+\dfrac{1}{10\times11}\right)\)
\(A=2\times\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{10}-\dfrac{1}{11}\right)\)
\(A=2\times\left(\dfrac{1}{2}-\dfrac{1}{11}\right)\)
\(A=2\times\dfrac{9}{22}\)
\(A=\dfrac{9}{11}\)
F= 1/21+1/28+1/36+1/45+...+1/66
F= 1/21+1/28+1/36+1/45+...+1/66
F/2=1/42+1/56+1/72+1/90+...+1/132
F/2=1/6.7+1/7.8+1/8.9+1/9.10+...+1/11.12
F/2=1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+...+1/11-1/12
F/2=1/6-1/12
F/2=1/12
F=1/12.2
F=1/6
1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45
Coi \(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}\)
\(\Rightarrow\frac{1}{2}A=\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}\right).\frac{1}{2}\)
\(=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
\(\Rightarrow A=\frac{2}{5}:\frac{1}{2}=\frac{4}{5}\)
1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45