Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đừng hỏi tên tôi
Xem chi tiết
Anh Triêt
1 tháng 4 2017 lúc 21:14

\(A=\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+...+\dfrac{1}{210}\)

\(2.\left(\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+...+\dfrac{1}{420}\right)\)

\(2.\left(\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+...+\dfrac{1}{20.21}\right)\)

\(2.\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+...\dfrac{1}{20}+\dfrac{1}{21}\right)\)

\(=2.\left(\dfrac{1}{6}-\dfrac{1}{21}\right)=\dfrac{5}{21}\)

Nguyệt Nguyệt
1 tháng 4 2017 lúc 21:28

A = \(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+...+\dfrac{1}{210}\)

A = \(\dfrac{2}{42}+\dfrac{2}{56}+\dfrac{2}{72}+\dfrac{2}{90}+...+\dfrac{2}{210}\)

A = \(\dfrac{2}{6.7}+\dfrac{2}{7.8}+\dfrac{2}{8.9}+\dfrac{2}{9.10}+...+\dfrac{2}{14.15}\)

A = \(2.\left(\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+...+\dfrac{1}{14.15}\right)\)

A = \(2.\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+...+\dfrac{1}{14}-\dfrac{1}{15}\right)\)

A = \(2.\left(\dfrac{1}{6}-\dfrac{1}{15}\right)\)

A = \(2.\dfrac{1}{10}\)

A = \(\dfrac{2}{10}\)

A = \(\dfrac{1}{5}\)

Nguyệt Nguyệt
1 tháng 4 2017 lúc 21:32

sorry, mik làm lộn

Làm lại nha:
A = \(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+...+\dfrac{1}{210}\)

A = \(\dfrac{2}{42}+\dfrac{2}{56}+\dfrac{2}{72}+\dfrac{2}{90}+...+\dfrac{2}{420}\)

A = \(2.\left(\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+...+\dfrac{1}{420}\right)\)

A = \(2.\left(\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+...+\dfrac{1}{20.21}\right)\)

A = \(2.\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+...+\dfrac{1}{20}-\dfrac{1}{21}\right)\)

A = \(2.\left(\dfrac{1}{6}-\dfrac{1}{21}\right)\)

A = \(2.\dfrac{5}{42}\)

A = \(\dfrac{5}{21}\)

Trần Ngô Thanh Vân
Xem chi tiết
Kinder
26 tháng 4 2017 lúc 8:19

Ta có:

\(A=\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{1}{210}\)

=> \(\dfrac{1}{2}A=\dfrac{1}{2}\left(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+...+\dfrac{1}{210}\right)\text{​}\)

\(=\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+...+\dfrac{1}{420}\)

\(=\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+...+\dfrac{1}{20.21}\)

\(=\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+...+\dfrac{1}{20}-\dfrac{1}{21}\)

\(=\dfrac{1}{6}-\dfrac{1}{21}\)

\(=\dfrac{5}{42}\)

Vậy \(A=\dfrac{5}{42}\)

lê vân trang
Xem chi tiết
lê vân trang
17 tháng 4 2022 lúc 11:31

giúp mình nhanh với nhé

Hoàng Thị Thu Phúc
17 tháng 4 2022 lúc 11:38

A = 12/55

Phạm Tiến Minh
Xem chi tiết
Akai Haruma
9 tháng 11 2021 lúc 7:51

Lời giải:

$\frac{A}{2}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}$
$=\frac{2-1}{1\times 2}+\frac{3-2}{2\times 3}+\frac{4-3}{3\times 4}+\frac{5-4}{4\times 5}+\frac{6-5}{5\times 6}+\frac{7-6}{6\times 7}+\frac{9-8}{8\times 9}+\frac{10-9}{9\times 10}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}$

$=1-\frac{1}{9}=\frac{8}{9}$

$\Rightarrow A=2\times \frac{8}{9}=\frac{16}{9}$

Lê Ngọc Đạt
Xem chi tiết
Bảo Ngân Tạ Ngọc
Xem chi tiết
HT.Phong (9A5)
16 tháng 10 2023 lúc 5:31

\(A=\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+\dfrac{1}{55}\)

\(A=2\times\dfrac{1}{2}\times\left(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+\dfrac{1}{55}\right)\)

\(A=2\times\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}\right)\)

\(A=2\times\left(\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+...+\dfrac{1}{9\times10}+\dfrac{1}{10\times11}\right)\)

\(A=2\times\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{10}-\dfrac{1}{11}\right)\)

\(A=2\times\left(\dfrac{1}{2}-\dfrac{1}{11}\right)\)

\(A=2\times\dfrac{9}{22}\)

\(A=\dfrac{9}{11}\)

Mimi Bông
Xem chi tiết
The love of Shinichi and...
14 tháng 6 2016 lúc 9:47

F= 1/21+1/28+1/36+1/45+...+1/66

F/2=1/42+1/56+1/72+1/90+...+1/132

F/2=1/6.7+1/7.8+1/8.9+1/9.10+...+1/11.12

F/2=1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+...+1/11-1/12

F/2=1/6-1/12

F/2=1/12

F=1/12.2

F=1/6

Hà Minh Hiếu
Xem chi tiết
Le Thi Khanh Huyen
12 tháng 9 2015 lúc 12:34

Coi \(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}\)

\(\Rightarrow\frac{1}{2}A=\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}\right).\frac{1}{2}\)

\(=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\)

\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)

\(\Rightarrow A=\frac{2}{5}:\frac{1}{2}=\frac{4}{5}\)

Nguyễn Đình Dũng
12 tháng 9 2015 lúc 12:36

Trần Thùy Dung: hay cho l.i.k.e

Hunter of Death
12 tháng 9 2015 lúc 12:40

4/5                                                 

Hồ Lê Diệp Chi
Xem chi tiết