\(A=\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+...+\dfrac{1}{210}\)
\(2.\left(\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+...+\dfrac{1}{420}\right)\)
\(2.\left(\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+...+\dfrac{1}{20.21}\right)\)
\(2.\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+...\dfrac{1}{20}+\dfrac{1}{21}\right)\)
\(=2.\left(\dfrac{1}{6}-\dfrac{1}{21}\right)=\dfrac{5}{21}\)
A = \(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+...+\dfrac{1}{210}\)
A = \(\dfrac{2}{42}+\dfrac{2}{56}+\dfrac{2}{72}+\dfrac{2}{90}+...+\dfrac{2}{210}\)
A = \(\dfrac{2}{6.7}+\dfrac{2}{7.8}+\dfrac{2}{8.9}+\dfrac{2}{9.10}+...+\dfrac{2}{14.15}\)
A = \(2.\left(\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+...+\dfrac{1}{14.15}\right)\)
A = \(2.\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+...+\dfrac{1}{14}-\dfrac{1}{15}\right)\)
A = \(2.\left(\dfrac{1}{6}-\dfrac{1}{15}\right)\)
A = \(2.\dfrac{1}{10}\)
A = \(\dfrac{2}{10}\)
A = \(\dfrac{1}{5}\)
sorry, mik làm lộn
Làm lại nha:
A = \(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+...+\dfrac{1}{210}\)
A = \(\dfrac{2}{42}+\dfrac{2}{56}+\dfrac{2}{72}+\dfrac{2}{90}+...+\dfrac{2}{420}\)
A = \(2.\left(\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+...+\dfrac{1}{420}\right)\)
A = \(2.\left(\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}+...+\dfrac{1}{20.21}\right)\)
A = \(2.\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}+...+\dfrac{1}{20}-\dfrac{1}{21}\right)\)
A = \(2.\left(\dfrac{1}{6}-\dfrac{1}{21}\right)\)
A = \(2.\dfrac{5}{42}\)
A = \(\dfrac{5}{21}\)