Tìm số nguyên n, n>6 để giá trị A=n+9/n-6 là số nguyên dương
a) Với giá trị nào của n thì phân số sau có giá trị là số nguyên A= 3/n-5
b) Cho phân số n+9/n-6 ( n € Z , n > 6 ) . Tìm các gái trị của n để phân số có giá trị là số nguyên dương
a) Để \(A\inℤ\)
\(\Rightarrow3⋮n-5\)
\(\Rightarrow n-5\inƯ\left(3\right)\)
\(\Rightarrow n-5\in\left\{1;-1;3;-3\right\}\)
Lập bảng xét các trường hợp :
\(n-1\) | \(1\) | \(3\) | \(-1\) | \(-3\) |
\(n\) | \(2\) | \(4\) | \(0\) | \(-2\) |
Vậy \(n\in\left\{2;4;0\right\}\)
b) Để \(\frac{n+9}{n-6}\inℕ\Leftrightarrow n+9⋮n-6\)
\(\Rightarrow n-6+15⋮n-6\)
Vì \(n-6⋮n-6\)
\(\Rightarrow15⋮n-6\)
\(\Rightarrow n-6\inƯ\left(15\right)\)
\(\Rightarrow n-6\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
Lập bảng xét các trường hợp ta có:
\(n-6\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(5\) | \(-5\) | \(15\) | \(-15\) |
\(n\) | \(7\) | \(5\) | \(9\) | \(3\) | \(11\) | \(1\) | \(21\) | \(-9\) |
Vậy \(n\in\left\{7;5;9;3;11;1;21;-9\right\}\)
cho phân số
B=n+9/n+6 (n thuộc Z,n>6)
tìm các giá trị của n để B là số nguyên dương
Ta có
\(B=\frac{n+9}{n+6}=\frac{n+6+3}{n+6}=1+\frac{3}{n+6}\)
B nguyên dương khi n+6 thuộc ước nguyên dương của 3
\(n+6\in U\left(3\right)=1;3\\ TH1:n+6=1\Rightarrow n=-5\\ TH2:n+6=3\Rightarrow n=-3\)
\(\Rightarrow n\in-5;-3\)
cho phân số\(\frac{n+9}{n-6}\)(n thuộc Z,n<6). Tìm các giá trị của n để phân số có giá trị là nguyên dương.
làm ơn hộ mình nhanh lên
Do phân số \(\frac{n+9}{n-6}\)nguyên dương
=> n + 9 chia hết cho n - 6
=> n - 6 + 15 chia hết cho n - 6
Do n - 6 chia hết cho n - 6 => 15 chia hết cho n - 6
Mà n > 6 => n - 6 > 0 => \(n-6=15\)
=> n = 21
Mk nghĩ chỗ điều kiện n < 6 fai sửa thành n > 6 ms đúng đó
Cho phân số n+9/n-6 (n>6, n thuộc số nguyên)
a, Tìm mọi giá trị của n để phân số có giá trị ngyên
b, Tìm mọi giá trị của n để phân số là phân số tối giản
a) n+9n−6=n−6+15n−6=1+15n−6n+9n−6=n−6+15n−6=1+15n−6
Để phân số có giá trị là số tự nhiên điều kiện là:
n−6∈Ư(15)={1;3;5;15}n−6∈Ư(15)={1;3;5;15}vì n > 6
=> n∈{7;9;11;21}n∈{7;9;11;21} thỏa mãn
b) Đặt: (n+9;n−6)=d(n+9;n−6)=d với d là số tự nhiên
=> \hept{n+9⋮dn−6⋮d⇒15⋮d\hept{n+9⋮dn−6⋮d⇒15⋮d=> d∈Ư(15)={1;3;5;15}d∈Ư(15)={1;3;5;15}
Với d = 3 => \hept{n+9⋮3n−6⋮3⇒2(n+9)−(n−6)⋮3⇒n+24⋮3⇒n⋮3\hept{n+9⋮3n−6⋮3⇒2(n+9)−(n−6)⋮3⇒n+24⋮3⇒n⋮3=> Tồn tại số tự nhiên k để n = 3k ( k>2)
Với d = 5 => \hept{n+9⋮5n−6⋮5⇒2(n+9)−(n−6)⋮5⇒n+4⋮5\hept{n+9⋮5n−6⋮5⇒2(n+9)−(n−6)⋮5⇒n+4⋮5=> Tồn tại stn h để: n + 4 = 5 h <=> n = 5h - 4 ( h > 2)
Do đó để phân số trên là tốn giản
<=> d = 1 => n≠3k;n≠5h−4n≠3k;n≠5h−4 với h; k là số tự nhiên lớn hơn 2
Vậy n≠3k;n≠5h−4n≠3k;n≠5h−4 với h; k là số tự nhiên lớn hơn 2
tìm số nguyên n để phân só n+9 có giá trị là 1 số nguyên n-6
=\(\dfrac{n-6+6+9}{n-6}\)
=\(\dfrac{\left(n-6\right)+15}{n-6}\)
=1+\(\dfrac{15}{n-6}\)
⇒n-6ϵ Ư(15)=-15,-5,-3,-1,1,3,5,15
⇒n=-9,1,3,5,7,9,11,21
Cho phân số n 9 n 6 n thuộc N, n 6 . Tìm các giá trị của n để B số trên có giá trị là số nguyên
Bài 1: Cho phân số n+9/n-6 ( n>6, n thuộc Z)
a, Tìm mọi giá trị của n để phân số có giá trị nguyên
b, Tìm mọi giá trị của n để phân số là phân số tối giản
Lời giải:
a. Để phân số đã cho có giá trị nguyên thì:
$n+9\vdots n-6$
$\Rightarrow (n-6)+15\vdots n-6$
$\Rightarrow 15\vdots n-6$
Mà $n>6$ nên $n-6>0$
$\Rightarrow n-6\in\left\{1;3;5;15\right\}$
$\Rightarrow n\in \left\{7; 9; 11; 21\right\}$
b.
Gọi $d=ƯCLN(n+9, n-6)$
$\Rightarrow n+9\vdots d; n-6\vdots d$
$\Rightarrow (n+9)-(n-6)\vdots d$
$\Rightarrow 15\vdots d$
Để ps đã cho tối giản thì $(d,15)=1$
$\Rightarrow (3,d)=(5,d)=1$
Điều này xảy ra khi:
$n-6\not\vdots 3; n-6\not\vdots 5$
$\Rightarrow n\not\vdots 3$ và $n-1\not\vdots 5$
$\Rightarrow n\not\vdots 3$ và $n\neq 5k+1$ với $k$ nguyên.
Cho phân số n+9/n-6 ( n thuộc N, n > 6 ) . Tìm các giá trị của n để phân số trên có giá trị là số nguyên
gọi biểu thức là A ta có :
để A nguyên thì n+9 phải chia hết cho n-6
n+9 : hết cho n-6
=> n - 6 +15 : hết cho n-6
vì n-6 : hết cho n-6
=> 15 : hết cho n-6
=> n-6 thuộc Ư(15)
=> n-6 thuộc {1,3,5,15}
=> n thuộc {7 , 9 , 11, 21}(thõa mãn điều kiện n thuộc N , n>6)
cho phân số n+9/n-6 (n thuoc Z,n < 6) .Tim cac gia tri cua n
để phân số có giá trị là nguyên dương
cho A=\(\dfrac{n-6}{n-2}\) với n là số nguyên
a) Tìm điều kiện của n để A là phân số
b) Tìm n để A nhận giá trị là số nguyên âm lớn nhất
c) Tìm n để A nhận giá trị là số tự nhiên
d) Tìm giá trị lớn nhất và giá trị nhỏ nhất của A
hellp!!!
a) Để A là phân số thì : \(n-2\ne0=>n\ne2\)
b) Để A nhận giá trị nguyên âm lớn nhất
\(=>A=-1\\ =>\dfrac{n-6}{n-2}=-1\\ =>n-6=-\left(n-2\right)\\ =>n-6=-n+2\\ =>n+n=6+2\\ =>2n=8\\ =>n=4\left(TMDK\right)\)
c) \(A=\dfrac{n-6}{n-2}=\dfrac{n-2-4}{n-2}=1-\dfrac{4}{n-2}\)
Để A nhận gt số nguyên thì : \(\dfrac{4}{n-2}\in Z=>4⋮\left(n-2\right)\\ =>n-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\\ =>n\in\left\{3;1;4;0;6;-2\right\}\)
Đến đây bạn lập bảng giá trị rồi thay từng gt n vào bt A, giá trị nào cho A là STN thì bạn nhận gt đó ạ.
d) Mình nghĩ bạn thiếu đề ạ