Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hân Zaa
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 8 2021 lúc 16:01

A sai

\(\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{DA}=\overrightarrow{DA}+\overrightarrow{AB}=\overrightarrow{DB}=-\overrightarrow{BD}\) mới đúng

Khẳng định A 

Nguyễn Lê Phước Thịnh
19 tháng 8 2021 lúc 0:49

Chọn A

Nguyễn Hồng Hạnh
Xem chi tiết
Hồng Quang
31 tháng 7 2019 lúc 19:27

A B D C O / / // // a) Chứng minh \(\overrightarrow{AC}-\overrightarrow{BA}=\overrightarrow{AD}\)

Ta có: \(\overrightarrow{AC}-\overrightarrow{CD}=\overrightarrow{AD}\left(đpcm\right)\) ( vì \(\overrightarrow{BA}=\overrightarrow{CD}\) )

b) Chứng minh \(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=AC\)

Ta có: \(\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{AC}\) ( theo quy tắc hình bình hành )

\(\Rightarrow\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AC}\right|=AC\left(đpcm\right)\)

bài này chả khó áp dụng 1 bước là ra ngay điều cần chứng minh rồi

Linh Nguyễn
Xem chi tiết
học mãi
30 tháng 10 2021 lúc 12:56

undefined

MARIA OZAWA
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 0:52

a) Ta có: \(\left\{ \begin{array}{l}AD//BC\\AD = BC\end{array} \right.\) (do tứ giác ABCD là hình bình hành)

\( \Rightarrow \overrightarrow {AD}  = \overrightarrow {BC} \)

b) Ta có: \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
27 tháng 5 2017 lúc 8:12

Hình giải tích trong không gian

Sách Giáo Khoa
Xem chi tiết
Nguyen Thuy Hoa
27 tháng 5 2017 lúc 8:11

Hình giải tích trong không gian

Hình giải tích trong không gian

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 0:53

Ta có: \(\overrightarrow {AB}  + \overrightarrow {CE}  + \overrightarrow {AD}  = (\overrightarrow {AB}  + \overrightarrow {AD} ) + \overrightarrow {CE} \) (tính chất giao hoán)

Mà theo quy tắc hình bình hành ta có: \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

Suy ra \(\overrightarrow {AB}  + \overrightarrow {CE}  + \overrightarrow {AD}  = \overrightarrow {AC}  + \overrightarrow {CE}  = \overrightarrow {AE} \)

Vậy \(\overrightarrow {AB}  + \overrightarrow {CE}  + \overrightarrow {AD}  = \overrightarrow {AE} \) với điểm E bất kì.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 15:41

Vì ABCD là hình bình hành nên \(\left\{ \begin{array}{l}AD//\;BC\\AD = BC\end{array} \right.\), hay \(\overrightarrow {AD}  = \overrightarrow {BC} \).

Do đó \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \).