cho tam giác ABC đường cao AH gọi D , E lần lượt là hình chiếu của H trên AB,AC .CM:DE mũ hai =BD nhân CE nhân BC
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC. Chứng minh ∛BD² + ∛CE² = ∛BC
cho tam giác ABC vuông tại A , đường cao AH . Gọi D và E lần lượt là hình chiếu của D trên AB và AC . Chứng minh rằng DE2 = BD * CE*BC
góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
=>AH=DE
BD*CE*BC
=BH^2/BA*CH^2/CA*BC
=AH^4/AH=AH^3
=DE^3
cho tam giác ABC có A = 90 độ, AB<AC, đường cáo AH gọi D và E lần lượt là hình chiếu của H trên AB và AC:
CMR: \(AH^3=BC\times BD\times CE\)
+ cm \(BD\cdot AB=AH^2;CE\cdot AC=AH^2\)
\(\Rightarrow BD\cdot AB\cdot CE\cdot AC=AH^4\)
ma \(AB\cdot AC=BC\cdot AH\)
\(\Rightarrow dpcm\)
Cho tam giác ABC vuông tại A, tanC=2/3, đường cao AH. Gọi D,E lần lượt là hình chiếu cùa H trên AB,AC. Tính \(\frac{BD}{CE}\)
Cho tam giác ABC vuông tại A , đường cao AH chia cạnh BC thành hai đoạn thẳng CH = 4cm, HB = 9cm.
a/ Tính AH ; AC; sinHÂC.
b/ Gọi D; E lần lượt là hình chiếu của H trên các cạnh AB ; AC
a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=6\left(cm\right)\\CA=2\sqrt{13}\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
Cho tam giác ABC có AH là đường cao ( H thuộc BC). Gọi E và D lần lượt là hình chiếu
của H trên AB và AC. Chứng minh rằng :
a)tam giác ABH ~ tam giác AHE
b) HE2 = AE. BE
c) Gọi M là giao điểm của BD và CE. Chứng minh rằng tam giác ADE ~ tam giác ABC.
d) Chứng minh góc HAD = góc DEH
a) Xét ΔABH vuông tại H và ΔAHE vuông tại E có
\(\widehat{BAH}\) chung
Do đó: ΔABH\(\sim\)ΔAHE(g-g)
b) Xét ΔAEH vuông tại E và ΔHEB vuông tại E có
\(\widehat{EAH}=\widehat{EHB}\left(=90^0-\widehat{EBH}\right)\)
Do đó: ΔAEH\(\sim\)ΔHEB(g-g)
Suy ra: \(\dfrac{EA}{EH}=\dfrac{EH}{EB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(HE^2=AE\cdot BE\)(đpcm)
d) Xét tứ giác AEHD có
\(\widehat{AEH}\) và \(\widehat{ADH}\) là hai góc đối
\(\widehat{AEH}+\widehat{ADH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AEHD là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Suy ra: \(\widehat{HAD}=\widehat{HED}\)(hai góc cùng nhìn cạnh HD)(Đpcm)
Cho tam giác nhọn ABC (AB<AC) nội tiếp đường trong (O). Hai đường cao BD và CE của tam giác ABC cắt nhau tại H. Đường thẳng AH cắt BC và (O) lần lượt tại F và K (K≠A). Gọi L là hình chiếu cuả D lên AB.
a, C/m: Tứ giác BEDC nội tiếp và BD2 = BL.
b, Gọi J là giao điểm của KD và (O) ,(J ≠K). C/m: ^BJK=^BDE
c, Gọi I là giao điểm của BJ và ED. C/m: Tứ giác ALIJ nội tiếp và I là trung điểm của ED