Chứng minh: \(\forall m,n,p,q\) ta đều có:
\(m^2+n^2+p^2+q^2+1\ge m\left(n+p+q+1\right)\)
chứng minh với mọi m,n,p,q ta đều có:
m2+n2+p2+q2+1\(\ge\)m(n+p+q+1)
T thay mặt bạn Tuấn giúp bạn Tuấn làm bài tập của bạn Tuấn nhé :)
Ta có
\(\frac{m^2}{4}+n^2\ge mn\)
\(\frac{m^2}{4}+p^2\ge mp\)
\(\frac{m^2}{4}+q^2\ge mq\)
\(\frac{m^2}{4}+1\ge m\)
Cộng vế theo vế được
m2 + n2 + p2 + q2 + 1 \(\ge\)m(n + p + q + 1)
Vào CHTT,có đấy
1.Cho \(n\inℕ^∗\)và a,b dương , chứng minh:
\(\frac{1}{a^n}+\frac{1}{b^n}\ge\frac{2^{n+1}}{\left(a+b\right)^n}\)
2.Cho m,n dương , chứng minh:
\(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\)
3.Cho m,n,p là các số dương, chứng minh:
\(\frac{a^2}{m}+\frac{b^2}{n}+\frac{c^2}{p}\ge\frac{\left(a+b+c\right)^2}{m+n+p}\)
Giúp mình với mn ơi!!
Bài này bạn chỉ cần chuyển vế biến đổi thôi là được , mình làm mẫu câu 2) :
\(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\)
\(\Leftrightarrow\frac{a^2n+b^2m}{mn}-\frac{\left(a+b\right)^2}{m+n}\ge0\)
\(\Leftrightarrow\frac{\left(m+n\right)\left(a^2n+b^2m\right)-\left(a^2+2ab+b^2\right).mn}{mn\left(m+n\right)}\ge0\)
\(\Leftrightarrow\frac{a^2mn+\left(bm\right)^2+\left(an\right)^2+b^2mn-a^2mn-2abmn-b^2mn}{mn\left(m+n\right)}\ge0\)
\(\Leftrightarrow\frac{\left(bm-an\right)^2}{mn\left(m+n\right)}\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow bm=an\)
Câu 3) áp dụng câu 2) để chứng minh dễ dàng hơn, ghép cặp 2 .
1. Chứng minh rằng với \(\forall N\ne0̸\) ta đều có :
a, \(\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+\dfrac{1}{\left(3n-1\right)\cdot\left(3n+1\right)}=\dfrac{n}{6n+4}\).
2. Tìm GTLN hoặc GTNN của biểu thức \(A=\dfrac{\left|2-x\right|-3}{\left|2-x\right|+11}\).
Chứng minh với mọi m,n,p,q ta đều có: m2 + n2 + p2 + q2 + 1 ≥ m( n + p + q +1)
Với mọi m;n;p;q dương nhé bạn!
Áp dụng bất đẳng thức AM-GM cho 2 số dương:
\(\dfrac{m^2}{4}+n^2\ge2\sqrt{\dfrac{m^2n^2}{4}}=mn\)
\(\)\(\dfrac{m^2}{4}+p^2\ge2\sqrt{\dfrac{m^2p^2}{4}}=mp\)
\(\dfrac{m^2}{4}+q^2\ge2\sqrt{\dfrac{m^2q^2}{4}}=mq\)
\(\dfrac{m^2}{4}+1\ge2\sqrt{\dfrac{m^2}{4}}=m\)
Cộng theo vế: \(m^2+n^2+p^2+q^2+1\ge m\left(n+p+q+1\right)\)
Chứng minh với mọi m , n , q ,p ta đều có :
m2 + n2 + p2 + q2 +1 \(\ge\) m(n +p +q +1 )
Ta có:
m2+n2+p2+q2+1-mn+mp+mq+m
\(=\left(\dfrac{m^2}{4}-mn+n^2\right)+\left(\dfrac{m^2}{4}-mp+p^2\right)+\left(\dfrac{m^2}{4}-mq+q^2\right)+\left(\dfrac{m^2}{4}-m+1\right)\)
\(=\left(\dfrac{m}{2}-n\right)^2+\left(\dfrac{m}{2}-p\right)^2+\left(\dfrac{m}{2}-q\right)^2+\left(\dfrac{m}{2}-1\right)^2\)
mà \(\left(\dfrac{m}{2}-n\right)^2\ge0;\left(\dfrac{m}{2}-p\right)^2\ge0;\left(\dfrac{m}{2}-q\right)^2\ge0;\left(\dfrac{m}{2}-1\right)^2\ge0\)
=> \(\left(\dfrac{m}{2}-n\right)^2+\left(\dfrac{m}{2}-p\right)^2+\left(\dfrac{m}{2}-q\right)^2+\left(\dfrac{m}{2}-1\right)^2\ge0\)
<=> m2+n2+p2+q2+1-mn+mp+mq+m \(\ge0\)
<=> m2+n2+p2+q2+1\(\ge\) mn+mp+mq+m
<=> m2+n2+p2+q2+1\(\ge\) m(n+p+q+1)
Vậy m2+n2+p2+q2+1\(\ge\) m(n+p+q+1) với mọi m, n, p, q
Giải:
Ta có:
\(m^2+n^2+p^2+q^2+1\ge m\left(n+p+q+1\right)\)
\(\Leftrightarrow\left(\dfrac{m^2}{4}-mn+n^2\right)+\left(\dfrac{m^2}{4}-mp+p^2\right)+\left(\dfrac{m^2}{4}-mq+q^2\right)+\left(\dfrac{m^2}{4}-m+1\right)\ge0\)
\(\Leftrightarrow\left(\dfrac{m}{2}-n\right)^2+\left(\dfrac{m}{2}-p\right)^2\) \(+\left(\dfrac{m}{2}-q\right)^2+\left(\dfrac{m}{2}-1\right)^2\) \(\ge0\) (luôn đúng)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m}{2}-n=0\\\dfrac{m}{2}-p=0\\\dfrac{m}{2}-q=0\\\dfrac{m}{2}-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n=\dfrac{m}{2}\\p=\dfrac{m}{2}\\q=\dfrac{m}{2}\\m=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2\\n=p=q=1\end{matrix}\right.\)
Vậy \(m^2+n^2+p^2+q^2+1\ge m\left(n+p+q+1\right)\) (Đpcm)
Đề:Cho m,n là các số nguyên dương với \(n>1\).Đặt \(P=m^2n^2-4m+4n\)
Chứng minh rằng nếu P là số chính phương thì m=n
Giả sử \(m>n>1\)
Xét \(\left(mn^2-2\right)^2-n^2\left(m^2n^2-4m+4n\right)\)
\(=m^2n^4-4mn^2+4-mn^4+4mn^2-4n^3\)
\(=-4n^3+4< 0\) với \(\forall n>1\)
\(\Rightarrow\left(mn^2-2\right)^2< n^2\left(m^2n^2-4n+4n\right)\left(1\right)\)
Xét \(n^2\left(m^2n^2-4m+4n\right)-m^2n^4\)
\(=m^2n^4-4mn^2+4n^3-m^2n^4\)
\(=-4mn^2+4n^3\)
\(=-4n^2\left(m-n\right)< 0\) với \(\forall m>n>1\)
\(\Rightarrow n^2\left(m^2n^2-4m+4n\right)< m^2n^4\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\left(mn^2-2\right)^2< n^2\left(m^2n^2-4m+4n\right)< m^2n^4\)
\(\Rightarrow\left(\frac{mn^2-2}{n}\right)^2< P< \left(mn\right)^2\)
Xét \(\frac{mn^2-2}{n}-\left(mn-1\right)=\frac{n-2}{n}\ge0\) với \(\forall n\ge2\)
\(\Rightarrow\frac{mn^2-2}{n}\ge mn-1\)
\(\Rightarrow\left(mn-1\right)^2< P< \left(mn\right)^2\left(VL\right)\)
Kẹp giữa 2 số chính phương liên tiếp thì không tồn tại số chính phương nào.OK?
Giả sử \(m< n\)
\(\Rightarrow P>m^2n^2\left(3\right)\)
Xét \(m^2n^2-4m+4n-\left(mn+2\right)^2\)
\(=m^2n^2-4m+4n-m^2n^2-4mn-4\)
\(=n-m-mn-1=n\left(1-m\right)-m-1< 0\)
\(\Rightarrow P< \left(mn+2\right)^2\left(4\right)\)
Từ \(\left(3\right);\left(4\right)\Rightarrow\left(mn\right)^2< P< \left(mn+2\right)^2\)
Để P là số chính phương thì \(P=\left(mn+1\right)^2\)
\(\Rightarrow m^2n^2-4m+4n=m^2n^2+2mn+1\)
\(\Rightarrow-4m+4n-2mn=1\) quá VL
Với \(m=n\Rightarrow P=m^2n^2=\left(mn\right)^2\left(Lscp\right)\) cực kỳ HL:v
P/S:Ko chắc đâu nha.m thử làm bài 1 cấy.t cụng ra rồi nhưng coi cách m cho nó chắc:v Định dùng cách kẹp khác mà đề cho chặt quá:((
\(A\left(x\right)=Q\left(x\right)\left(x-1\right)+4\)(1)
\(A\left(x\right)=P\left(x\right)\left(x-3\right)+14\)(2)
\(A\left(x\right)=\left(x-1\right)\left(x-3\right)T\left(x\right)+F\left(x\right)\)(3)
Đặt : \(F\left(x\right)=ax+b\)
Với x=1 từ (1) và (3)
\(\hept{\begin{cases}A\left(1\right)=4\\A\left(1\right)=a+b\end{cases}}\)
\(\Rightarrow a+b=4\)(*)
Với x=3 từ (3) và (2)
\(\hept{\begin{cases}A\left(3\right)=14\\A\left(3\right)=3a+b\end{cases}}\)
\(\Rightarrow3a+b=14\)(**)
Từ (*) và (**)
\(\Rightarrow2a=10\Rightarrow a=5\Rightarrow b=-1\)
\(\Rightarrow F\left(x\right)=ax+b=5x-1\)
T lm r, ko bt có đúng ko:))
Bài 1: a) Cho x>0,y>0 và m,n là hai số thực .Chứng minh rằng \(\frac{m^2}{x}+\frac{n^2}{y}\) ≥ \(\frac{\left(m+n\right)^2}{x+y}\)
b)Cho a,b,c là 3 số dương thỏa mãn abc=1.Chứng minh rằng : \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\) ≥\(\frac{3}{2}\)
a/ Bạn cứ khai triển biến đổi tương đương thôi (mà làm biếng lắm)
b/ Đặt \(\left(a;b;c\right)=\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\Rightarrow xyz=1\)
\(VT=\frac{x^3yz}{y+z}+\frac{y^3zx}{z+x}+\frac{xyz^3}{x+y}=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
\(VT\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{1}{2}\left(x+y+z\right)\ge\frac{1}{2}.3\sqrt[3]{xyz}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(a=b=c=1\)
Áp dụng Buhiacopxki có \(\left(\left(\frac{m}{\sqrt{x}}\right)^2+\left(\frac{n}{\sqrt{y}}\right)^2\right)\left(\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right)\ge\left(m+n\right)^2\)
\(\RightarrowĐPCM\)
Chứng minh rằng: \(\left|\dfrac{m}{n}-\sqrt{2}\right|\ge\dfrac{1}{n^2\left(\sqrt{3}+\sqrt{2}\right)}\)
Chứng minh bất đẳng thức :
a) \(y^8-y^7+y^2-y+1>0\)
b)\(m^2+n^2+p^2+q^2+1\ge m\left(n+p+q+1\right)\)